268 research outputs found

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time Ď„01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Tilt Induced Localization and Delocalization in the Second Landau Level

    Full text link
    We have investigated the behavior of electronic phases of the second Landau level under tilted magnetic fields. The fractional quantum Hall liquids at ν=\nu=2+1/5 and 2+4/5 and the solid phases at ν=\nu=2.30, 2.44, 2.57, and 2.70 are quickly destroyed with tilt. This behavior can be interpreted as a tilt driven localization of the 2+1/5 and 2+4/5 fractional quantum Hall liquids and a delocalization through melting of solid phases in the top Landau level, respectively. The evolution towards the classical Hall gas of the solid phases is suggestive of antiferromagnetic ordering

    Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms

    Full text link
    We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area and we thus simulate a magnetic flux through the lattice. This setup is described by a Hamiltonian identical to the one for electrons on a lattice subject to a magnetic field and thus allows us to study this equivalent situation under very well defined controllable conditions. We consider the limiting case of huge magnetic fields -- which is not experimentally accessible for electrons in metals -- where a fractal band structure, the Hofstadter butterfly, characterizes the system.Comment: 6 pages, RevTe

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure

    Highly Anisotropic Transport in the Integer Quantum Hall Effect

    Full text link
    At very large tilt of the magnetic (B) field with respect to the plane of a two-dimensional electron system the transport in the integer quantum Hall regime at ν\nu = 4, 6, and 8 becomes strongly anisotropic. At these filling factors the usual {\em deep minima} in the magneto-resistance occur for the current flowing {\em perpendicular} to the in-plane B field direction but develop into {\em strong maxima} for the current flowing {\em parallel} to the in-plane B field. The origin of this anisotropy is unknown but resembles the recently observed anisotropy at half-filled Landau levels.Comment: 4 pages, 4 figure

    Temperature Dependence of Magnetophonon Resistance Oscillations in GaAs/AlAs Heterostructures at High Filling Factors

    Full text link
    The temperature dependence of phonon-induced resistance oscillations has been investigated in two-dimensional electron system with moderate mobility at large filling factors at temperature range T = 7.4 - 25.4 K. The amplitude of phonon-induced oscillations has been found to be governed by quantum relaxation time which is determined by electron-electron interaction effects. This is in agreement with results recently obtained in ultra-high mobility two-dimensional electron system with low electron density [A. T. Hatke et al., Phys. Rev. Lett. 102, 086808 (2009)]. The shift of the main maximum of the magnetophonon resistance oscillations to higher magnetic fields with increasing temperature is observed.Comment: 5 pages, 4 figure

    Zero-field spin splitting in InAs-AlSb quantum wells revisited

    Full text link
    We present magnetotransport experiments on high-quality InAs-AlSb quantum wells that show a perfectly clean single-period Shubnikov-de Haas oscillation down to very low magnetic fields. In contrast to theoretical expectations based on an asymmetry induced zero-field spin splitting, no beating effect is observed. The carrier density has been changed by the persistent photo conductivity effect as well as via the application of hydrostatic pressure in order to influence the electric field at the interface of the electron gas. Still no indication of spin splitting at zero magnetic field was observed in spite of highly resolved Shubnikov- de Haas oscillations up to filling factors of 200. This surprising and unexpected result is discussed in view of other recently published data.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Conductivity of graphene: How to distinguish between samples with short and long range scatterers

    Full text link
    Applying a quasiclassical equation to carriers in graphene we found a way how to distinguish between samples with the domination of short and long range scatterers from the conductivity measurements. The model proposed explains recent transport experiments with chemically doped as well as suspended graphene.Comment: 6 pages, 3 figures, some references have been corrected and revise

    NMR Determination of 2D Electron Spin Polarization at ν=1/2\nu=1/2

    Full text link
    Using a `standard' NMR spin-echo technique we determined the spin polarization of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei in the wells. Concentrating on the temperature and magnetic field dependencies of spin polarization at Landau level filling factor ν=1/2\nu =1/2, we find that the results are described well by a simple model of non-interacting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.Comment: 4 pages (REVTEX) AND 4 figures (PS
    • …
    corecore