371 research outputs found

    The Nature of Quantum Hall States near the Charge Neutral Dirac Point in Graphene

    Full text link
    We investigate the quantum Hall (QH) states near the charge neutral Dirac point of a high mobility graphene sample in high magnetic fields. We find that the QH states at filling factors ν=±1\nu=\pm1 depend only on the perpendicular component of the field with respect to the graphene plane, indicating them to be not spin-related. A non-linear magnetic field dependence of the activation energy gap at filling factor ν=1\nu=1 suggests a many-body origin. We therefore propose that the ν=0\nu=0 and ±1\pm1 states arise from the lifting of the spin and sub-lattice degeneracy of the n=0n=0 LL, respectively.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Electron Depletion Due to Bias of a T-Shaped Field-Effect Transistor

    Full text link
    A T-shaped field-effect transistor, made out of a pair of two-dimensional electron gases, is modeled and studied. A simple numerical model is developed to study the electron distribution vs. applied gate voltage for different gate lengths. The model is then improved to account for depletion and the width of the two-dimensional electron gases. The results are then compared to the experimental ones and to some approximate analytical calculations and are found to be in good agreement with them.Comment: 16 pages, LaTex (RevTex), 8 fig

    Non-parabolicity of the conduction band of wurtzite GaN

    Full text link
    Using cyclotron resonance, we measure the effective mass, mm*, of electrons in AlGaN/GaN heterostructures with densities, n2D16×1012n_{2D}\sim 1-6\times10^{12}cm2^{-2}. From our extensive data, we extrapolate a band edge mass of (0.208±0.002)me(0.208\pm0.002) m_e. By comparing our mm* data with the results of a multi-band \textbf{k.p} calculation we infer that the effect of remote bands is essential in explaining the observed conduction band non-parabolicity (NP). Our calculation of polaron mass corrections -- including finite width and screening - suggests those to be negligible. It implies that the behavior of m(n2D)m*(n_{2D}) can be understood solely in terms of NP. Finally, using our NP and polaron corrections, we are able to reduce the large scatter in the published band edge mass values

    Infrared spectroscopy of Landau levels in graphene

    Full text link
    We report infrared studies of the Landau level (LL) transitions in single layer graphene. Our specimens are density tunable and show \textit{in situ} half-integer quantum Hall plateaus. Infrared transmission is measured in magnetic fields up to B=18 T at selected LL fillings. Resonances between hole LLs and electron LLs, as well as resonances between hole and electron LLs are resolved. Their transition energies are proportional to B\sqrt{B} and the deduced band velocity is c~1.1×106\tilde{c}\approx1.1\times10^6 m/s. The lack of precise scaling between different LL transitions indicates considerable contributions of many-particle effects to the infrared transition energies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Suppression of hole-hole scattering in GaAs/AlGaAs heterostructures under uniaxial compression

    Full text link
    Resistance, magnetoresistance and their temperature dependencies have been investigated in the 2D hole gas at a [001] p-GaAs/Al0.5_{0.5}Ga0.5_{0.5}As heterointerface under [110] uniaxial compression. Analysis performed in the frame of hole-hole scattering between carriers in the two spin splitted subbands of the ground heavy hole state indicates, that h-h scattering is strongly suppressed by uniaxial compression. The decay time τ01\tau_{01} of the relative momentum reveals 4.5 times increase at a uniaxial compression of 1.3 kbar.Comment: 5 pages, 3 figures. submitted to Phys.Rev.

    Electron--Electron Scattering in Quantum Wires and it's Possible Suppression due to Spin Effects

    Full text link
    A microscopic picture of electron-electron pair scattering in single mode quantum wires is introduced which includes electron spin. A new source of `excess' noise for hot carriers is presented. We show that zero magnetic field `spin' splitting in quantum wires can lead to a dramatic `spin'-subband dependence of electron--electron scattering, including the possibility of strong suppression. As a consequence extremely long electron coherence lengths and new spin-related phenomena are predicted. Since electron bands in III-V semiconductor quantum wires are in general spin-split in zero applied magnetic field, these new transport effects are of general importance.Comment: 11 pages, LaTeX and APS-RevteX 2, Rep.No. GF66,Figures from author, Physical Review Letters, scheduled for 7 June 199

    Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves

    Full text link
    Motivated by a recent experiment of Willett et al. [Phys. Rev. Lett. 78, 4478 (1997)], we employ semiclassical composite-fermion theory to study the effect of a periodic density modulation on a quantum Hall system near Landau level filling factor nu=1/2. We show that even a weak density modulation leads to dramatic changes in surface-acoustic-wave (SAW) propagation, and propose an explanation for several key features of the experimental observations. We predict that properly arranged dc transport measurements would show a structure similar to that seen in SAW measurements.Comment: Version published in Phys. Rev. Lett. Figures changed to show SAW velocity shift. LaTeX, 5 pages, two included postscript figure

    Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels

    Get PDF
    Magneto-transport experiments on high mobility two-dimensional electron gases in GaAs/AlGaAs heterostructures have revealed striking anomalies near half-filling of several spin-resolved, yet highly excited, Landau levels. These anomalies include strong anisotropies and non-linearities of the longitudinal resistivity rho_xx which commence only below about 150mK. These phenomena are not seen in the ground or first excited Landau level but begin abruptly in the third level. Although their origin remains unclear, we speculate that they reflect the spontaneous development of a generic anisotropic many-electron state.Comment: 4 pages with 5 figures, to be published in Phys. Rev. Letters, new figure added (Fig. 4

    Explanation for the Resistivity Law in Quantum Hall System

    Full text link
    We consider a 2D electron system in a strong magnetic field, where the local Hall resistivity ρxy(r)\rho_{xy}(\vec r) is a function of position and ρxx(r)\rho_{xx}(\vec r) is small compared to ρxy\rho_{xy}. Particularly if the correlations fall off slowly with distance, or if fluctuations exist on several length scales, one finds that the macroscopic longitudinal resistivity RxxR_{xx} is only weakly dependent on ρxx\rho_{xx} and is approximately proportional to the magnitude of fluctuations in ρxy\rho_{xy}. This may provide an explanation of the empirical law RxxBdRxydBR_{xx} \propto B \frac{dR_{xy}}{dB} where RxyR_{xy} is the Hall resistance, and BB is the magnetic field.Comment: 11 pages (REVTeX 3.0). Revised Version. Complete postscript file for this paper is available on the World Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0

    Chiral Surface States in the Bulk Quantum Hall Effect

    Full text link
    In layered samples which exhibit a bulk quantum Hall effect (QHE), a two-dimensional (2d) surface ``sheath" of gapless excitations is expected. These excitations comprise a novel 2d chiral quantum liquid which should dominate the low temperature transport along the field (z-axis). For the integer QHE, we show that localization effects are completely absent in the ``sheath", giving a metallic z-axis conductivity. For fractional filling ν=1/3\nu =1/3, the ``sheath" is a 2d non-Fermi liquid, with incoherent z-axis transport and σzzT3\sigma_{zz} \sim T^3. Experimental implications for the Bechgaard salts are discussed.Comment: 4 pages, RevTeX 3.0, with two encapsulated postscript figures, which can be automatically included in-text if desired. The complete postscript file is available on the WWW at http://www.itp.ucsb.edu/~balents/sheath.p
    corecore