1,702 research outputs found

    Simulation of seismic events induced by CO2 injection at In Salah, Algeria

    Get PDF
    Date of Acceptance: 18/06/2015 Acknowledgments The authors would like to thank the operators of the In Salah JV and JIP, BP, Statoil and Sonatrach, for providing the data shown in this paper, and for giving permission to publish. Midland Valley Exploration are thanked for the use of their Move software for geomechanical restoration. JPV is a Natural Environment Research Council (NERC) Early Career Research Fellow (Grant NE/I021497/1) and ALS is funded by a NERC Partnership Research Grant (Grant NE/I010904).Peer reviewedPublisher PD

    The microseismic response at the In Salah Carbon Capture and Storage (CCS) site

    Get PDF
    AbstractIn 2004, injection of carbon dioxide (CO2) to be stored at depth began at the In Salah Carbon Capture and Storage (CCS) site and a pilot microseismic monitoring array was installed in 2009. The In Salah project presents an unusual dataset since it is the first major non-Enhanced Oil Recovery (EOR) CCS project to be monitored for microseismicity. This paper outlines an extensive seismological study using a range of techniques, relying mainly on data from a single three-component geophone. Important information is derived from the data, such as event locations, event magnitudes and fracture characteristics, that could be used in real-time to regulate the geomechanical response of a site to CO2 injection. The event rate closely follows the CO2 injection rate, with a total of 9506 seismic events detected. The locations for a carefully selected subset of events are estimated to occur at or below the injection interval, thereby ruling out fault or fracture activation caused by CO2 migration at shallow depths. A very small number of events (11) with less well-constrained locations may have occurred above the injection interval. However, there is no microseismic evidence that these events are correlated with CO2 injection and we suggest they are caused by stress transfer rather than CO2 migration into the caprock. The observed maximum moment magnitude, Mw=1.7, is consistent with estimated fracture dimensions at the injection depth. Fracture orientation estimated using shear-wave splitting analysis is approximately NW-SE, in agreement with fracture orientations inferred from logging data. During periods of high injection rates the degree of anisotropy increases slightly and then falls back to original values when injection rates fall. This implies the CO2 is opening pre-existing fractures which then close as pressure decreases.This an important proof-of-concept study that proves the value of microseismic monitoring of CCS projects, even with a limited array. We thus recommend that microseismic monitoring arrays are installed prior to CO2 injection at future CCS sites to enhance our understanding by making baseline and comparative studies possible. This would also provide real-time monitoring of the geomechanical response to injection, allowing operators to modify injection parameters and to help ensure the safe operation of a project

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Comparison of geomechanical deformation induced by megatonne-scale CO2 storage at Sleipner, Weyburn, and In Salah

    Get PDF
    Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage sit
    corecore