9 research outputs found

    Class A Orphans in GtoPdb v.2023.1

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [194], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [150]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3 GPR4 GPR6 GPR12 GPR15 GPR17 GPR20 GPR22 GPR26 GPR31 GPR34 GPR35 GPR37 GPR39 GPR50 GPR63 GRP65 GPR68 GPR75 GPR84 GPR87 GPR88 GPR132 GPR149 GPR161 GPR183 LGR4 LGR5 LGR6 MAS1 MRGPRD MRGPRX1 MRGPRX2 P2RY10 TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans in GtoPdb v.2022.3

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GPR65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans in GtoPdb v.2021.3

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [161], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [121]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [191], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [148]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.Table 1: Class A orphan GPCRs with putative endogenous ligands GPR3GPR4GPR6GPR12GPR15GPR17GPR20 GPR22GPR26GPR31GPR34GPR35GPR37GPR39 GPR50GPR63GRP65GPR68GPR75GPR84GPR87 GPR88GPR132GPR149GPR161GPR183LGR4LGR5 LGR6MAS1MRGPRDMRGPRX1MRGPRX2P2RY10TAAR2 In addition the orphan receptors GPR18, GPR55 and GPR119 which are reported to respond to endogenous agents analogous to the endogenous cannabinoid ligands have been grouped together (GPR18, GPR55 and GPR119)

    Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39

    Get PDF
    AbstractAla substitution of potential metal-ion binding residues in the main ligand-binding pocket of the Zn2+-activated G protein-coupled receptor 39 (GPR39) receptor did not decrease Zn2+ potency. In contrast, Zn2+ stimulation was eliminated by combined substitution of His17 and His19, located in the N-terminal segment. Surprisingly, substitution of Asp313 located in extracellular loop 3 greatly increased ligand-independent signaling and apparently eliminated Zn2+-induced activation. It is proposed that Zn2+ acts as an agonist for GPR39, not in the classical manner by directly stabilizing an active conformation of the transmembrane domain, but instead by binding to His17 and His19 in the extracellular domain and potentially by diverting Asp313 from functioning as a tethered inverse agonist through engaging this residue in a tridentate metal-ion binding site
    corecore