8,014 research outputs found

    Saddle-point van Hove singularity and the phase diagram of high-Tc cuprates

    Full text link
    We examine the generic phase behavior of high-Tc cuprate superconductors in terms a universal van Hove singularity in the strongly overdoped region. Using a rigid ARPES-derived dispersion we solve the BCS gap equation and show that the pairing interaction or pairing energy cutoff must be a rapidly declining function of doping. This result is prejudicial to a phonon-based pairing interaction and more consistent with a magnetic or magnetically enhanced interaction.Comment: 5 pages, 2 figures, submitted to Physical Review

    Spectral variation in the X-ray pulsar GX 1+4 during a low-flux episode

    Get PDF
    The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51ks between 1996 July 19 - 21. During this period the flux decreased smoothly from an initial mean level of ~ 6 X 10^36 erg/s to a minimum of ~ 4 X 10^35 erg/s (2-60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation. BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals. The single best-fitting spectral model was based on a component originating from thermal photons with kT ~ 1 keV Comptonised by a plasma of temperature kT \~ 7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density nH contributing to the mean spectral change. A strong flare of duration 50 s was observed during the interval of minimum flux, with the peak flux ~ 20 times the mean level. Although beaming effects are likely to mask the true variation in Mdot thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.Comment: 8 pages, 3 figures, submitted to MNRA

    Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State

    Get PDF
    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray pulsar GX 1+4 for a period of 34 hours on July 19/20 1996. The source faded from an intensity of ~20 mCrab to a minimum of <~0.7 mCrab and then partially recovered towards the end of the observation. This extended minimum lasted ~40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred <10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a Pdot/P value of ~-1.5% per year at a 4.5 sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity, close to the center of the extended minimum.Comment: 19 pages, 6 figures, accepted for publication in Astrophysical Journal (tentatively scheduled for vol. 529 #1, 20 Jan 2000

    Thermodynamic properties of Bi2Sr2CaCu2O8 calculated from the electronic dispersion

    Full text link
    The electronic dispersion for Bi2Sr2CaCu2O(8+d) has been determined from angle-resolved photoelectron spectroscopy (ARPES). From this dispersion we calculate the entropy and superfluid density. Even with no adjustable parameters we obtain an exceptional match with experimental data across the entire phase diagram, thus indirectly confirming both the ARPES and thermodynamic data. The van Hove singularity is crossed in the overdoped region giving a distinctive linear-in-T temperature dependence in the superfluid density there.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    The 21cm Signature of the First Stars

    Get PDF
    We predict the 21-cm signature of the first metal-free stars. The soft X-rays emitted by these stars penetrate the atomic medium around their host halos, generating Lyman alpha photons that couple the spin and kinetic temperatures. These creates a region we call the Lyman alpha sphere, visible in 21-cm against the CMB, which is much larger than the HII region produced by the same star. The spin and kinetic temperatures are strongly coupled before the X-rays can substantially heat the medium, implying that a strong 21-cm absorption signal from the adiabatically cooled gas in Hubble expansion around the star is expected when the medium has not been heated previously. A central region of emission from the gas heated by the soft X-rays is also present although with a weaker signal than the absorption. The Lyman alpha sphere is a universal signature that should be observed around any first star illuminating its vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere can be calculated as a function of the luminosity, spectrum and age of the star. For a star of a few hundred solar masses and zero metallicity (as expected for the first stars), the physical radius of the Lyman alpha sphere can reach tens of kiloparsecs. The first metal-free stars should be strongly clustered because of high cosmic biasing; this implies that the regions producing a 21-cm absorption signal may contain more than one star and will generally be irregular and not spherical, because of the complex distribution of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres, which would be present at redshifts z30z\sim 30 in the Cold Dark Matter model. Their observation would represent a direct proof of the detection of a first star.Comment: replaced with ApJ accepted version. Many minor revisions and additional references, major results unchange

    Effluent sampling of Scout D and Delta launch vehicle exhausts

    Get PDF
    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds

    UNSWIRF: A Tunable Imaging Spectrometer for the Near-Infrared

    Get PDF
    We describe the specifications, characteristics, calibration, and analysis of data from the University of New South Wales Infrared Fabry-Perot (UNSWIRF) etalon. UNSWIRF is a near-infrared tunable imaging spectrometer, used primarily in conjunction with IRIS on the AAT, but suitable for use as a visitor instrument at other telescopes. The etalon delivers a resolving power in excess of 4000 (corresponding to a velocity resolution ~75 km/s), and allows imaging of fields up to 100" in diameter on the AAT at any wavelength between 1.5 and 2.4 microns for which suitable blocking filters are available.Comment: 16 pages, 10 figures, uses psfig.sty and html.sty (included). To appear in Publications of the Astronomical Society of Australi

    Isotope Effect in the Superfluid Density of HTS Cuprates: Stripes, Pseudogap and Impurities

    Full text link
    Underdoped cuprates exhibit a normal-state pseudogap, and their spins and doped carriers tend to spatially separate into 1- or 2-D stripes. Some view these as central to superconductivity, others as peripheral and merely competing. Using La2x_{2-x}Srx_xCu1y_{1-y}Zny_yO4_4 we show that an oxygen isotope effect in TcT_c and in the superfluid density can be used to distinguish between the roles of stripes and pseudogap and also to detect the presence of impurity scattering. We conclude that stripes and pseudogap are distinct, and both compete and coexist with superconductivity.Comment: Revised submission to PRL with added appendix on a possible isotope effect in the effective mass, 4 pages, 3 figure

    The effect of collisional enhancement of Balmer lines on the determination of the primordial helium abundance

    Full text link
    This paper describes a new determination of the primordial helium abundance (Y_P), based on the abundance analysis of five metal-poor extragalactic HII regions. For three regions of the sample (SBS 0335-052, I Zw 18, and H29) we present tailored photoionization models based on improved calculations with respect to previous models. In particular, we use the photoionization models to study quantitatively the effect of collisional excitation of Balmer lines on the determination of the helium abundance (Y) in the individual regions. This effect is twofold: first, the intensities of the Balmer lines are enhanced with respect to the pure recombination value, mimicking a higher hydrogen abundance; second, the observed reddening is larger than the true extinction, due to the differential effect of collisions on different Balmer lines. In addition to these effects, our analysis takes into account the following features of HII regions: (i) the temperature structure, (ii) the density structure, (iii) the presence of neutral helium, (iv) the collisional excitation of the HeI lines, (v) the underlying absorption of the HeI lines, and (vi) the optical thickness of the HeI lines. The object that shows the highest increase in Y after the inclusion of collisional effects in the analysis is SBS 0335-052, whose helium abundance has been revised by Delta Y = +0.0107. The revised Y values for the five objects in our sample yield an increase of +0.0035 in Y_P, giving Y_P = 0.2391 +/- 0.0020.Comment: 59 pages, 8 figures. AAS Latex. Accepted for publication in the Astrophysical Journa
    corecore