46 research outputs found

    Future Fitness of Female Insect Pests in Temporally Stable and Unstable Habitats and Its Impact on Habitat Utility as Refuges for Insect Resistance Management

    Get PDF
    The long-term fitness of individuals is examined in complex and temporally dynamic ecosystems. We call this multigeneration fitness measure “future fitness”. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a polyphagous insect that feeds on many wild and cultivated hosts. While four generations of H. zea occur during the cropping season in the U.S. Mid Southern agroecosysem, the latter two generations were of most interest, as corn (which has been largely nontransgenic in the Mid-South) dominates the first two generations in the cropping system. In simulations of the evolution of resistance to Bt-transgenic crops, cotton refuge areas were found to be significantly more effective than similar soybean acreages at delaying the evolution of resistance. Cotton is a suitable host for H. zea during two late summer generations, while a soybean field is suitable for only one of these generations, therefore soybean fields of other maturity groups were simulated as being attractive during the alternative generation. A hypothetical soybean variety was tested in which a single field would be attractive over both generations and it was found to be significantly more effective at delaying resistance than simulated conventional soybean varieties. Finally, the placement of individuals emerging at the start of the 3rd (first without corn) generation was simulated in either refuge cotton, conventional soybean and the hypothetical long attractive soybean and the mean number of offspring produced was measured at the end of the season. Although females in conventional and long soybean crops had the same expected fecundity, because of differences in temporal stability of the two crops, the long soybean simulations had significantly more H. zea individuals at the end of the season than the conventional soybean simulations. These simulations demonstrate that the long-term fecundity associated with an individual is dependent not only on the fecundity of that individual in its current habitat, but also the temporal stability of habitats, the ecosystem at large and the likelihood that the individual's offspring will move into different habitats

    Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds

    Get PDF
    Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important aspect of imprinted gene expression

    The benefits of exercise training in interstitial lung disease: protocol for a multicentre randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interstitial lung disease encompasses a diverse group of chronic lung conditions characterised by distressing dyspnoea, fatigue, reduced exercise tolerance and poor health-related quality of life. Exercise training is one of the few treatments to induce positive changes in exercise tolerance and symptoms, however there is marked variability in response. The aetiology and severity of interstitial lung disease may influence the response to treatment. The aims of this project are to establish the impact of exercise training across the range of disease severity and to identify whether there is an optimal time for patients with interstitial lung disease to receive exercise training.</p> <p>Methods/Design</p> <p>One hundred and sixteen participants with interstitial lung disease recruited from three tertiary institutions will be randomised to either an exercise training group (supervised exercise training twice weekly for eight weeks) or a usual care group (weekly telephone support). The 6-minute walk distance, peripheral muscle strength, health-related quality of life, dyspnoea, anxiety and depression will be measured by a blinded assessor at baseline, immediately following the intervention and at six months following the intervention. The primary outcome will be change in 6-minute walk distance following the intervention, with planned subgroup analyses for participants with idiopathic pulmonary fibrosis, dust-related interstitial lung disease and connective-tissue related interstitial lung disease. The effects of disease severity on outcomes will be evaluated using important markers of disease severity and survival, such as forced vital capacity, carbon monoxide transfer factor and pulmonary hypertension.</p> <p>Discussion</p> <p>This trial will provide certainty regarding the role of exercise training in interstitial lung disease and will identify at what time point within the disease process this treatment is most effective. The results from this study will inform and optimise the clinical management of people with interstitial lung disease.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry ACTRN12611000416998</p
    corecore