20,477 research outputs found
The simulation of ionospheric conditions for space vehicles
Plasma wind tunnel to simulate ionospheric conditions for space vehicle
Working Group 5: Measurements technology and active experiments
Technology issues identified by working groups 5 are listed. (1) New instruments are needed to upgrade the ability to measure plasma properties in space. (2) Facilities should be developed for conducting a broad range of plasma experiments in space. (3) The ability to predict plasma weather within magnetospheres should be improved and a capability to modify plasma weather developed. (4) Methods of control of plasma spacecraft and spacecraft plasma interference should be upgraded. (5) The space station laboratory facilities should be designed with attention to problems of flexibility to allow for future growth. These issues are discussed
The Intensities of Cosmic Ray H and He Nuclei at ~250 MeV/nuc Measured by Voyagers 1 and 2 - Using these Intensities to Determine the Solar Modulation Parameter in the Inner Heliosphere and the Heliosheath Over a 40 Year Time Period
We have determined the solar modulation potential, phi, vs. time that is
observed at Voyager 1 and 2 from measurements of the H and He nuclei
intensities at a common energy of 250 MeVnuc. The H nuclei have a rigidity 0.7
GV, the He nuclei 1.4 GV. These measurements cover a 40 year time period, which
includes almost 4 cycles of solar 11 year sunspot variations, throughout the
inner heliosphere out to the HTS at distances of 95 AU and 85 AU, respectively
at V1 and V2, and then beyond in the heliosheath. Inside the HTS the modulation
potential vs. time curves at V1 and V2 show a very similar temporal structure
to those observed at the Earth. During a later period of maximum solar
modulation from 2000.0 to 2005.0 when V1 and V2 are in the outer heliosphere
between 60-94 AU, the main temporal features of the modulation potential curves
at all 3 locations match up with appropriate time delays at V1 and V2 if it is
assumed that spatially coherent structures are moving outward past V1 and V2,
with outward speeds of up to 700 Kms negative 1. After 2004.0 V1 and V2 are at
latitudes of positive 35 and negative 30 respectively, placing lower limits on
the latitude extent of these structures. Beyond the HTS in the heliosheath the
modulation potential slowly decreases at both spacecraft with only a weak
evidence of the unusual modulation minimum observed at the Earth in 2009, for
example. A sudden decrease of the modulation potential 50 MV for both H and He
nuclei occurs at V1 just before the heliopause crossing at about 122 AU. This
decrease has not yet been observed at V2, which is now at 113 AU and still
observing a modulation potential 60 MV.Comment: 28 pages, 9 Figure
Techniques for the realization of ultrareliable spaceborne computers Interim scientific report
Error-free ultrareliable spaceborne computer
Transient intensity changes of cosmic rays beyond the heliospheric termination shock as observed at Voyager 1
This paper continues our studies of temporal variations of cosmic rays beyond the heliospheric termination shock (HTS) using Voyager 1 (V1) data when V1 was beyond 94 AU. This new study utilizes cosmic ray protons and electrons of several energies. Notable transient decreases of 5–50% are observed in galactic cosmic ray nuclei and electrons at V1 shortly after similar decreases are observed at Voyager 2 (V2) still inside the HTS. These decreases at V1 appear to be related to the large solar events in September 2005 and December 2006 and the resulting outward moving interplanetary shock. These two large interplanetary shocks were the largest observed at V2 after V1 crossed the HTS at the end of 2004. They were observed at V2 just inside the HTS at 2006.16 and 2007.43 providing timing markers for V1. From the timing of the intensity decreases observed at V1 as the shocks first reach the HTS and then later reach V1 itself, we can estimate the shock speed beyond the HTS to be between 240 and 300 km s^(−1) in both cases. From the timing of the decreases observed when the shock first reaches the HTS and then several months later encounters the heliopause, we can estimate the heliosheath thickness to be 31 ± 4 and 37 ± 6 AU, respectively, for the two sequences of three decreases seen at V1. These values, along with the distances to the HTS that are determined, give distances from the Sun to the heliopause of 121 ± 4 and 124 ± 6 AU, respectively
At Voyager 1 Starting on about August 25, 2012 at a Distance of 121.7 AU From the Sun, a Sudden Disappearance of Anomalous Cosmic Rays and an Unusually Large Sudden Increase of Galactic Cosmic Ray H and He Nuclei and Electron Occurred
At the Voyager 1 spacecraft in the outer heliosphere, after a series of
complex intensity changes starting at about May 8th, the intensities of both
anomalous cosmic rays (ACR) and galactic cosmic rays (GCR) changed suddenly and
decisively on August 25th (121.7 AU from the Sun). The ACR started the
intensity decrease with an initial e-folding rate of intensity decrease of ~1
day. Within a matter of a few days, the intensity of 1.9-2.7 MeV protons and
helium nuclei had decreased to less than 0.1 of their previous value and after
a few weeks, corresponding to the outward movement of V1 by ~0.1 AU, these
intensities had decreased by factors of at least 300-500 and are now lower than
most estimates of the GCR spectrum for these lower energies and also at higher
energies. The decrease was accompanied by large rigidity dependent anisotropies
in addition to the extraordinary rapidity of the intensity changes. Also on
August 25th the GCR protons, helium and heavier nuclei as well as electrons
increased suddenly with the intensities of electrons reaching levels ~30-50%
higher than observed just one day earlier. This increase for GCR occurred over
~1 day for the lowest rigidity electrons, and several days for the higher
rigidity nuclei of rigidity ~0.5-1.0 GV. After reaching these higher levels the
intensities of the GCR of all energies from 2 to 400 MeV have remained
essentially constant with intensity levels and spectra that may represent the
local GCR. These intensity changes will be presented in more detail in this,
and future articles, as this story unfolds.Comment: 13 Pages, 5 Figure
Termination shock particle spectral features
Spectral features of energetic H ions accelerated at the termination shock may be evidence of two components. At low energies the energy spectrum is ~E^(–1.55), with break at ~0.4 MeV to E^(–2.2). A second component appears above ~1 MeV with a spectrum of E^(–1.27) with a break at ~3.2 MeV. Even though the intensities upstream are highly variable, the same spectral break energies are observed, suggesting that these are durable features of the source spectrum. The acceleration processes for the two components may differ, with the lower energy component serving as the injection source for diffusive shock acceleration of the higher energy component. Alternatively, the spectral features may result from the energy dependence of the diffusion tensor that affects the threshold for diffusive shock acceleration
Photovoltaic Oscillations Due to Edge-Magnetoplasmon Modes in a Very-High Mobility 2D Electron Gas
Using very-high mobility GaAs/AlGaAs 2D electron Hall bar samples, we have
experimentally studied the photoresistance/photovoltaic oscillations induced by
microwave irradiation in the regime where both 1/B and B-periodic oscillations
can be observed. In the frequency range between 27 and 130 GHz we found that
these two types of oscillations are decoupled from each other, consistent with
the respective models that 1/B oscillations occur in bulk while the
B-oscillations occur along the edges of the Hall bars. In contrast to the
original report of this phenomenon (Ref. 1) the periodicity of the
B-oscillations in our samples are found to be independent of L, the length of
the Hall bar section between voltage measuring leads.Comment: 4 pages, 4 figure
Voyager observations of galactic and anomalous cosmic rays in the helioshealth
Anomalous cosmic rays display large temporal variations at the time and location where Voyager 1 (V1) crossed the heliospheric termination shock (2004.86) (94AU, 34°N). On a short time scale (3 months) there was a large decrease produced by a series of merged interaction regions (MIR), the first of which was associated with the intense Oct./Nov. 2003 solar events. On a longer time scale there is a remarkable correlation between changes in the galactic cosmic ray (GCR) intensity and those of 10–56 MeV/n ACR He and 30–56 MeV H extending over a 4.3 year period with the GCRs exhibiting their expected behavior over this part of the 11 and 22 year solar activity and heliomagnetic cycle. The relative changes in the ACR and GCR are the same for both the short term and long term variations. The comparative V1/V2 ACR and GCR spectra in the foreshock and heliosheath indicate that at this time most of the higher energy ACRs are not being accelerated near V1 but must have their source region elsewhere — possibly near the equatorial region of the TS as was suggested in our first paper on the TS crossing (1)
The swept angle retarding mass spectrometer: Initial results from the Michigan auroral probe sounding rocket
Data from a sounding rocket flight of the swept angle retarding ion mass spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan auroral probe over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO(+) and O(+). Measured NO(+) densities ranged from 10 to the 5th power up to 3 x 10 to the 5th power ions/cu cm, while the measured O(+) densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs
- …