276 research outputs found

    Perturbation of the DevelopingXenopusRetinotectal Projection Following Injections of Antibodies against ÎČ1Integrin Receptors and N-cadherin

    Get PDF
    AbstractWe have examined the function of ÎČ1integrin receptors and N-cadherin in the development of theXenopusretinotectal projection.In vivoperturbation experiments were performed by injecting antibodies directed against ÎČ1integrin receptors and N-cadherin into the embryonic optic pathway. The antibodies were present during the initial development of the retinal projection, when the axons of the ganglion cells are migrating through the optic tract and terminating within the optic tectum. When injected individually, the antibodies were insufficient to cause obvious pathfinding errors. However, when injected together, the antibodies caused specific abnormalities in the development of the retinotectal projection. Pathfinding errors most commonly observed included ectopically projecting axons within the optic tract region, meandering and splaying of axons in the optic tectum, and the induction of prominent ipsilateral projections. IgGs and Fabâ€Č fragments of the antibodies produced pathfinding errors; these defects were not observed in animals injected with control antibodies. Thesein vivoresults show that ÎČ1integrin receptors and N-cadherin have important roles during the development of the visual projection and provide evidence that a balance between cell–cell and cell–matrix adhesion may be critical for the normal development of the vertebrate visual system

    Development of a Momentum Determined Electron Beam in the 1 -45 GeV Range

    Get PDF
    A beam line for electrons with energies in the range of 1 to 45 GeV, low contamination of hadrons and muons and high intensity up to 10^6 per accelerator spill at 27 GeV was setup at U70 accelerator in Protvino, Russia. A beam tagging system based on drift chambers with 160 micron resolution was able to measure relative electron beam momentum precisely. The resolution sigma_p p was 0.13% at 45 GeV where multiple scattering is negligible. This test beam setup provided the possibility to study properties of lead tungstate crystals (PbWO_4) for the BTeV experiment at Fermilab.Comment: 12 pages, 8 figures; work done by the BTeV Electromagnetic Calorimeter grou

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs Îł\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

    Full text link
    Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2

    LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype

    Full text link
    We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio

    Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    Full text link
    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2

    Inelastic Scattering Time for Conductance Fluctuations

    Full text link
    We revisit the problem of inelastic times governing the temperature behavior of the weak localization correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by the electron electron interaction, not only are those times identical but the scaling functions are also the same.Comment: 10 pages Revtex; 5 eps files include

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (∌109−10.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe
    • 

    corecore