34,396 research outputs found
Effect of contrast on the perception of direction of a moving pattern
A series of experiments examining the effect of contrast on the perception of moving plaids was performed to test the hypothesis that the human visual system determines the direction of a moving plaid in a two-staged process: decomposition into component motion followed by application of the intersection-of-contraints rule. Although there is recent evidence that the first tenet of the hypothesis is correct, i.e., that plaid motion is initially decomposed into the motion of the individual grating components, the nature of the second-stage combination rule has not yet been established. It was found that when the gratings within the plaid are of different contrast the preceived direction is not predicted by the intersection-of-constraints rule. There is a strong (up to 20 deg) bias in the direction of the higher-constrast grating. A revised model, which incorporates a contrast-dependent weighting of perceived grating speed as observed for one-dimensional patterns, can quantitatively predict most of the results. The results are then discussed in the context of various models of human visual motion processing and of physiological responses of neurons in the primate visual system
Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
Abstract—This paper describes the application of state-estimation
techniques for the real-time prediction of the state-of-charge
(SoC) and state-of-health (SoH) of lead-acid cells. Specifically,
approaches based on the well-known Kalman Filter (KF) and
Extended Kalman Filter (EKF), are presented, using a generic
cell model, to provide correction for offset, drift, and long-term
state divergence—an unfortunate feature of more traditional
coulomb-counting techniques. The underlying dynamic behavior
of each cell is modeled using two capacitors (bulk and surface) and
three resistors (terminal, surface, and end), from which the SoC
is determined from the voltage present on the bulk capacitor. Although
the structure of the model has been previously reported for
describing the characteristics of lithium-ion cells, here it is shown
to also provide an alternative to commonly employed models of
lead-acid cells when used in conjunction with a KF to estimate
SoC and an EKF to predict state-of-health (SoH). Measurements
using real-time road data are used to compare the performance
of conventional integration-based methods for estimating SoC
with those predicted from the presented state estimation schemes.
Results show that the proposed methodologies are superior to
more traditional techniques, with accuracy in determining the
SoC within 2% being demonstrated. Moreover, by accounting
for the nonlinearities present within the dynamic cell model, the
application of an EKF is shown to provide verifiable indications of
SoH of the cell pack
State-of-charge and state-of-health prediction of lead-acid batteries for hybrid electric vehicles using non-linear observers
The paper describes the application of state-estimation techniques for the real-time prediction of state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Approaches based on the extended Kalman filter (EKF) are presented to provide correction for offset, drift and state divergence - an unfortunate feature of more traditional coulomb-counting techniques. Experimental results are employed to demonstrate the relative attributes of the proposed methodolog
Sensorless control of deep-sea ROVs PMSMs excited by matrix converters
The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit
Observer techniques for estimating the state-of-charge and state-of-health of VRLABs for hybrid electric vehicles
The paper describes the application of observer-based state-estimation techniques for the real-time prediction of state-of-charge (SoC) and state-of-health (SoH) of lead-acid cells. Specifically, an approach based on the well-known Kalman filter, is employed, to estimate SoC, and the subsequent use of the EKF to accommodate model non-linearities to predict battery SoH. The underlying dynamic behaviour of each cell is based on a generic Randles' equivalent circuit comprising of two-capacitors (bulk and surface) and three resistors, (terminal, transfer and self-discharging). The presented techniques are shown to correct for offset, drift and long-term state divergence-an unfortunate feature of employing stand-alone models and more traditional coulomb-counting techniques. Measurements using real-time road data are used to compare the performance of conventional integration-based methods for estimating SoC, with those predicted from the presented state estimation schemes. Results show that the proposed methodologies are superior with SoC being estimated to be within 1% of measured. Moreover, by accounting for the nonlinearities present within the dynamic cell model, the application of an EKF is shown to provide verifiable indications of SoH of the cell pack
Correlated dynamics of inclusions in a supported membrane
The hydrodynamic theory of heterogeneous fluid membranes is extended to the
case of a membrane adjacent to a solid substrate. We derive the coupling
diffusion coefficients of pairs of membrane inclusions in the limit of large
separation compared to the inclusion size. Two-dimensional compressive stresses
in the membrane make the coupling coefficients decay asymptotically as
with interparticle distance . For the common case, where the distance to the
substrate is of sub-micron scale, we present expressions for the coupling
between distant disklike inclusions, which are valid for arbitrary inclusion
size. We calculate the effect of inclusions on the response of the membrane and
the associated corrections to the coupling diffusion coefficients to leading
order in the concentration of inclusions. While at short distances the response
is modified as if the membrane were a two-dimensional suspension, the
large-distance response is not renormalized by the inclusions.Comment: 15 page
Relaxation time of the topological T1 process in a two-dimensional foam
The elementary topological T1 process in a two-dimensional foam corresponds
to the "flip" of one soap film with respect to the geometrical constraints.
From a mechanical point of view, this T1 process is an elementary relaxation
process through which the entire structure of an out-of-equilibrium foam
evolves. The dynamics of this elementary relaxation process has been poorly
investigated and is generally neglected during simulations of foams. We study
both experimentally and theoretically the T1 dynamics in a dry two-dimensional
foam. We show that the dynamics is controlled by the surface viscoelastic
properties of the soap films (surface shear plus dilatational viscosity, ms+k,
and Gibbs elasticity e), and is independent of the shear viscosity of the bulk
liquid. Moreover, our approach illustrates that the dynamics of T1 relaxation
process provides a convenient tool for measuring the surface rheological
properties: we obtained e = 32+/-8 mN/m and ms+k = 1.3+/-0.7 mPa.m.s for SDS,
and e = 65+/-12 mN/m and ms+k = 31+/-12 mPa.m.s for BSA, in good agreement with
values reported in the literature
A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions
We present a global magnetohydrodynamic (MHD) three dimensional simulation of
a nonradiative accretion flow originating in a pressure supported torus. The
evolution is controlled by the magnetorotational instability which produces
turbulence. The flow forms a nearly Keplerian disk. The total pressure scale
height in this disk is comparable to the vertical size of the initial torus.
Gas pressure dominates only near the equator; magnetic pressure is more
important in the surrounding atmosphere. A magnetically dominated bound outflow
is driven from the disk. The accretion rate through the disk exceeds the final
rate into the hole, and a hot torus forms inside 10 r_g. Hot gas, pushed up
against the centrifugal barrier and confined by magnetic pressure, is ejected
in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic
turbulence, not thermal convection, and a hydrodynamic alpha model is
inadequate to describe the flow. The limitations of two dimensional MHD
simulations are also discussed.Comment: 5 pages, 2 figures, submitted to ApJ Letters. For web version and
mpeg animations see http://www.astro.virginia.edu/~jh8h/nraf
Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations
Quantum coherence of electrons in ferromagnetic metals is difficult to assess
experimentally. We report the first measurements of time-dependent universal
conductance fluctuations in ferromagnetic metal (NiFe)
nanostructures as a function of temperature and magnetic field strength and
orientation. We find that the cooperon contribution to this quantum correction
is suppressed, and that domain wall motion can be a source of
coherence-enhanced conductance fluctuations. The fluctuations are more strongly
temperature dependent than those in normal metals, hinting that an unusual
dephasing mechanism may be at work.Comment: 5 pages, 4 figure
- …