3,242 research outputs found

    Collaborative working within UK NHS secondary care and across sectors for COPD and the impact of peer review : qualitative findings from the UK National COPD Resources and Outcomes Project

    Get PDF
    Introduction: We investigated the effects on collaborative work within the UK National Health Service (NHS) of an intervention for service quality improvement: informal, structured, reciprocated, multidisciplinary peer review with feedback and action plans. The setting was care for chronic obstructive pulmonary disease (COPD). Theory and methods: We analysed semi-structured interviews with 43 hospital respiratory consultants, nurses and general managers at 24 intervention and 11 control sites, as part of a UK randomised controlled study, the National COPD Resources and Outcomes Project (NCROP), using Scott’s conceptual framework for action (inter-organisational, intra-organisational, inter-professional and inter-individual). Three areas of care targeted by NCROP involved collaboration across primary and secondary care. Results: Hospital respiratory department collaborations with commissioners and hospital managers varied. Analysis suggested that this is related to team responses to barriers. Clinicians in unsuccessful collaborations told ‘atrocity stories’ of organisational, structural and professional barriers to service improvement. The others removed barriers by working with government and commissioner agendas to ensure continued involvement in patients’ care. Multidisciplinary peer review facilitated collaboration between participants, enabling them to meet, reconcile differences and exchange ideas across boundaries. Conclusions: The data come from the first randomised controlled trial of organisational peer review, adding to research into UK health service collaborative work, which has had a more restricted focus on inter-professional relations. NCROP peer review may only modestly improve collaboration but these data suggest it might be more effective than top-down exhortations to change when collaboration both across and within organisations is required

    Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations

    Full text link
    Stimulated Brillouin scattering (SBS) is an important nonlinear optical effect which can both enable and impede optical processes in guided wave systems. Highly multi-mode excitation of fibers has been proposed as a novel route towards efficient suppression of SBS in both active and passive fibers. To study the effects of multimode excitation generally, we develop a theory of SBS for arbitrary input excitations, fiber cross section geometries and refractive index profiles. We derive appropriate nonlinear coupled mode equations for the signal and Stokes modal amplitudes starting from vector optical and tensor acoustic equations. Using applicable approximations, we find an analytical formula for the SBS (Stokes) gain susceptibility, which takes into account the vector nature of both optical and acoustic modes exactly. We show that upon multimode excitation, the SBS power in each Stokes mode grows exponentially with a growth rate that depends parametrically on the distribution of power in the signal modes. Specializing to isotropic fibers we are able to define and calculate an effective SBS gain spectrum for any choice of multimode excitation. The peak value of this gain spectrum determines the SBS threshold, the maximum SBS-limited power that can be sent through the fiber. We show theoretically that peak SBS gain is greatly reduced by highly multimode excitation due to gain broadening and relatively weaker intermodal SBS gain. We demonstrate that equal excitation of the 160 modes of a commercially available, highly multimode circular step index fiber raises the SBS threshold by a factor of 6.5, and find comparable suppression of SBS in similar fibers with a D-shaped cross-section

    SMAD transcription factors are altered in cell models of HD and regulate HTT expression

    Get PDF
    Transcriptional dysregulation is observable in multiple animal and cell models of Huntington's disease, as well as in human blood and post-mortem caudate. This contributes to HD pathogenesis, although the exact mechanism by which this occurs is unknown. We therefore utilised a dynamic model in order to determine the differential effect of growth factor stimulation on gene expression, to highlight potential alterations in kinase signalling pathways that may be in part responsible for the transcriptional dysregulation observed in HD, and which may reveal new therapeutic targets. We demonstrate that cells expressing mutant huntingtin have a dysregulated transcriptional response to epidermal growth factor stimulation, and identify the transforming growth factor-beta pathway as a novel signalling pathway of interest that may regulate the expression of the Huntingtin (HTT) gene itself. The dysregulation of HTT expression may contribute to the altered transcriptional phenotype observed in HD

    Simulating Radiating and Magnetized Flows in Multi-Dimensions with ZEUS-MP

    Full text link
    This paper describes ZEUS-MP, a multi-physics, massively parallel, message- passing implementation of the ZEUS code. ZEUS-MP differs significantly from the ZEUS-2D code, the ZEUS-3D code, and an early "version 1" of ZEUS-MP distributed publicly in 1999. ZEUS-MP offers an MHD algorithm better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the Method of Characteristics scheme first suggested by Hawley and Stone (1995), and is shown to compare quite favorably to the TVD scheme described by Ryu et. al (1998). ZEUS-MP is the first publicly-available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules may be used in one, two, or three space dimensions. Self gravity may be included either through the assumption of a GM/r potential or a solution of Poisson's equation using one of three linear solver packages (conjugate-gradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported. Because ZEUS-MP is designed for simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (256^3 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.Comment: Accepted for publication in the ApJ Supplement. 42 pages with 29 inlined figures; uses emulateapj.sty. Discussions in sections 2 - 4 improved per referee comments; several figures modified to illustrate grid resolution. ZEUS-MP source code and documentation available from the Laboratory for Computational Astrophysics at http://lca.ucsd.edu/codes/currentcodes/zeusmp2

    Intensity Distribution of Waves Transmitted Through a Multiple Scattering Medium

    Get PDF
    The distributions of the angular transmission coefficient and of the total transmission are calculated for multiple scattered waves. The calculation is based on a mapping to the distribution of eigenvalues of the transmission matrix. The distributions depend on the profile of the incoming beam. The distribution function of the angular transmission has a stretched exponential decay. The total-transmission distribution grows log-normally whereas it decays exponentially.Comment: 8 pages, revtex3.0, 3 postscript figures, NvR0

    Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    Get PDF
    Trigonometric parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new objects. The median error in the parallax is 0.42 mas, and twelve nebulae have parallax errors less than 20 percent. The parallax for PHL932 is found here to be smaller than was measured by Hipparcos, and this peculiar object is discussed. Comparisons are made with other distance estimates. The distances determined from these parallaxes tend to be intermediate between some short distance estimates and other long estimates; they are somewhat smaller than estimated from spectra of the central stars. Proper motions and tangential velocities are presented. No astrometric perturbations from unresolved close companions are detected.Comment: 24 pages, includes 4 figures. Accepted for A

    Deppining of a Superfluid Vortex Inside a Circular Defect

    Full text link
    In this work we study the process of depinning of a quantum of circulation trapped inside a disk by an applied two dimensional superflow. We use the Gross-Pitaevskii model to describe the neutral superfluid. The collective coordinate dynamics is derived directly from the condensate equation of motion, the nonlinear Schroedinger equation, and it is used to obtain an expression for the critical velocity as a function of the defect radius. This expression is compared with a numerical result obtained from the time independent nonlinear Schroedinger equation. Below the critical velocity, we obtain the dependence of the semiclassical nucleation rate with the flow velocity at infinity. Above the critical velocity, the classical vortex depinning is illustrated with a numerical simulation of the time dependent nonlinear Schroedinger equation.Comment: 8 pages, 5 figures, uses revtex and epsf.st
    • 

    corecore