2,010 research outputs found

    The influence of Al: Nb ratio on the microstructure and mechanical response of quaternary Ni-Cr-Al-Nb alloys

    Get PDF
    The influence of Al:Nb ratio on the microstructure and properties of Ni–Cr–Al–Nb alloys has been investigated following long-term exposure at elevated temperatures. The γ′ volume fraction, size and lattice misfit were seen to increase with a larger Al:Nb ratio, although these changes resulted in reduced hardness. The change in the critical resolved shear stress (CRSS) associated with strong dislocation coupling was determined to be the dominant strengthening mechanism and increased with decreasing Al:Nb ratio. A distribution of tertiary γ′ was observed to be necessary in maximising the mechanical properties of these alloys.This work was supported by the EPSRC/Rolls-Royce Strategic Partnership (EP/H022309/1 and EP/H500375/1).This is the final published version, which can also be found on the Elsevier website at: http://www.sciencedirect.com/science/article/pii/S0921509314007369

    Probabilistic design of a molybdenum-base alloy using a neural network

    Get PDF
    An artificial intelligence tool is exploited to discover and characterize a new molybdenum-base alloy that is the most likely to simultaneously satisfy targets of cost, phase stability, precipitate content, yield stress, and hardness. Experimental testing demonstrates that the proposed alloy fulfills the computational predictions, and furthermore the physical properties exceed those of other commercially available Mo-base alloys for forging-die applications.The authors acknowledge the financial support of Rolls-Royce plc, EPSRC under EP/H022309/1 and EP/H500375/1, the Royal Society, and Gonville & Caius College

    A new approach to the analysis of short-range order in alloys using total scattering

    Get PDF
    In spite of its influence on a number of physical properties, short-range order in crystalline alloys has received little recent attention, largely due to the complexity of the experimental methods involved. In this work, a novel approach that could be used for the analysis of ordering transitions and short-range order in crystalline alloys using total scattering and reverse Monte Carlo (RMC) refinements is presented. Calculated pair distribution functions representative of different types of short-range order are used to illustrate the level of information contained within these experimentally accessible functions and the insight into ordering which may be obtained using this new method. Key considerations in the acquisition of data of sufficient quality for successful analysis are also discussed. It is shown that the atomistic models obtained from RMC refinements may be analysed to identify directly the Clapp configurations that are present. It is further shown how these configurations can be enhanced compared with a random structure, and how their degradation pathways and the distribution of Warren-Cowley parameters, can then be used to obtain a detailed, quantitative structural description of the short-range order occurring in crystalline alloys.Science and Technology Facilities CouncilThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.actamat.2016.05.03
    • …
    corecore