621 research outputs found

    Scope and precision of sustainability assessment approaches to food systems

    Get PDF
    With sustainability within food systems becoming an increasingly important issue, several approaches that claim to assess the sustainability of farms, farming systems, and supply chains have been developed. Looking more closely at these sustainability impact assessment approaches, we discerned considerable differences between them in terms of scope, the level of assessment, and the precision of indicators used for impact assessment. Our aim was to classify and analyze a range of available sustainability impact assessment approaches with respect to scope and precision. From a total of 35 sustainability assessment approaches, we selected 6 for a detailed comparison. From our analysis, we concluded that there are 3 different types of trade-offs in these approaches: between different kinds of scope, between different indicators for precision and trade-offs, and between the scope and precision. Thus, one-size-fits-all solutions, with respect to tool selection, are rarely feasible. Furthermore, as indicator selection determines the assessment results, different and inconsistent indicators can lead to contradictory assessment results that may not be comparable. To overcome these shortcomings, sustainability impact assessments should include a precise definition of the notion of “sustainability” along with a description of the methodological approach and the indicator sets and should aim for harmonization of indicators and assumptions. Global initiatives such as the Sustainability Assessment in Food and Agriculture Systems (SAFA) Guidelines are a helpful step toward shedding light on the differences of these approaches and making the assessment results more comparable

    COMPLETE SOLUTION OF THE XXZ-MODEL ON FINITE RINGS. DYNAMICAL STRUCTURE FACTORS AT ZERO TEMPERATURE.

    Full text link
    The finite size effects of the dynamical structure factors in the XXZ-model are studied in the euclidean time (τ)(\tau)-representation. Away from the critical momentum p=πp=\pi finite size effects turn out to be small except for the large τ\tau limit. The large finite size effects at the critical momentum p=πp=\pi signal the emergence of infrared singularities in the spectral (ω)(\omega)-representation of the dynamical structure factors.Comment: PostScript file with 12 pages + 11 figures uuencoded compresse

    Quantum algorithm for simulating the dynamics of an open quantum system

    Full text link
    In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment and their interaction: one basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system+environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.Comment: 5 figures, two table

    Decoherence in a scalable adiabatic quantum computer

    Full text link
    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability, i.e. the probability for the system to end up in its new ground state, on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks.Comment: 6 pages (two-column), 1 figur

    Charge and spin dynamics in the one-dimensional tJzt-J_z and tJt-J models

    Get PDF
    The impact of the spin-flip terms on the (static and dynamic) charge and spin correlations in the Luttinger-liquid ground state of the 1D tJt-J model is assessed by comparison with the same quantities in the 1D tJzt-J_z model, where spin-flip terms are absent. We employ the recursion method combined with a weak-coupling or a strong-coupling continued-fraction analysis. At Jz/t=0+J_z/t=0^+ we use the Pfaffian representation of dynamic spin correlations. The changing nature of the dynamically relevant charge and spin excitations on approach of the transition to phase separation is investigated in detail. The tJzt-J_z charge excitations (but not the spin excitations) at the transition have a single-mode nature, whereas charge and spin excitations have a complicated structure in the tJt-J model. In the tJzt-J_z model, phase separation is accompanied by N\'eel long-range order, caused by the condensation of electron clusters with an already existing alternating up-down spin configuration (topological long-range order). In the tJt-J model, by contrast, the spin-flip processes in the exchange coupling are responsible for continued strong spin fluctuations (dominated by 2-spinon excitations) in the phase-separated state.Comment: 11 pages (RevTex). 14 Figures available from author

    The Mott-Hubbard Transition on the D=infinity Bethe Lattice

    Full text link
    In view of a recent controversy we investigated the Mott-Hubbard transition in D=infinity with a novel cluster approach. i) We show that any truncated Bethe lattice of order n can be mapped exactly to a finite Hubbard-like cluster. ii) We evaluate the self-energy numerically for n=0,1,2 and compare with a series of self-consistent equation-of-motion solutions. iii) We find the gap to open continously at the critical U_c~2.5t* (t = t* / sqrt{4d}). iv) A low-energy theory for the Mott-Hubbard transition is developed and relations between critical exponents are presented.Comment: Replaced with the published versio

    Distributions of gaps and end-to-end correlations in random transverse-field Ising spin chains

    Full text link
    A previously introduced real space renormalization-group treatment of the random transverse-field Ising spin chain is extended to provide detailed information on the distribution of the energy gap and the end-to-end correlation function for long chains with free boundary conditions. Numerical data, using the mapping of the problem to free fermions, are found to be in good agreement with the analytic finite size scaling predictions.Comment: 12 pages revtex, 10 figures, submitted to Phys. Rev.

    Dynamic properties of the spin-1/2 XY chain with three-site interactions

    Full text link
    We consider a spin-1/2 XY chain in a transverse (z) field with multi-site interactions. The additional terms introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan-Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and hence the spin model admits a rigorous analysis. We point out the close relationships between several variants of the model which were discussed separately in previous studies. The ground-state phases (ferromagnet and two kinds of spin liquid) of the model are reflected in the dynamic structure factors of the spin chains, which are the main focus in this study. First we consider the zz dynamic structure factor reporting for this quantity a closed-form expression and analyzing the properties of the two-fermion (particle-hole) excitation continuum which governs the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we examine the xx dynamic structure factor which is governed by many-fermion excitations, reporting both analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors which are signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure

    Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant

    Get PDF
    Bremges A, Maus I, Belmann P, et al. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience. 2015;4(1): 33.Background The production of biogas takes place under anaerobic conditions and involves microbial decomposition of organic matter. Most of the participating microbes are still unknown and non-cultivable. Accordingly, shotgun metagenome sequencing currently is the method of choice to obtain insights into community composition and the genetic repertoire. Findings Here, we report on the deeply sequenced metagenome and metatranscriptome of a complex biogas-producing microbial community from an agricultural production-scale biogas plant. We assembled the metagenome and, as an example application, show that we reconstructed most genes involved in the methane metabolism, a key pathway involving methanogenesis performed by methanogenic Archaea. This result indicates that there is sufficient sequencing coverage for most downstream analyses. Conclusions Sequenced at least one order of magnitude deeper than previous studies, our metagenome data will enable new insights into community composition and the genetic potential of important community members. Moreover, mapping of transcripts to reconstructed genome sequences will enable the identification of active metabolic pathways in target organisms
    corecore