2,672 research outputs found

    Hepatic acute phase response protects the brain from focal inflammation during postnatal window of susceptibility

    Get PDF
    Perinatal inflammation is known to contribute to neurodevelopmental diseases. Animal models of perinatal inflammation have revealed that the inflammatory response within the brain is age dependent, but the regulators of this variation remain unclear. In the adult, the peripheral acute phase response (APR) is known to be pivotal in the downstream recruitment of leukocytes to the injured brain. The relationship between perinatal brain injury and the APR has not been established. Here, we generated focal inflammation in the brain using interleukin (IL)-1β at postnatal day (P)7, P14, P21 and P56 and studied both the central nervous system (CNS) and hepatic inflammatory responses at 4 h. We found that there is a significant window of susceptibility in mice at P14, when compared to mice at P7, P21 and P56. This was reflected in increased neutrophil recruitment to the CNS, as well as an increase in blood–brain barrier permeability. To investigate phenomena underlying this window of susceptibility, we performed a dose response of IL-1β. Whilst induction of endogenous IL-1β or intercellular adhesion molecule (ICAM)-1 in the brain and induction of a hepatic APR were dose dependent, the recruitment of neutrophils and associated blood–brain barrier breakdown was inversely proportional. Furthermore, in contrast to adult animals, an additional peripheral challenge (intravenous IL-1β) reduced the degree of CNS inflammation, rather than exacerbating it. Together these results suggest a unique window of susceptibility to CNS injury, meaning that suppressing systemic inflammation after brain injury may exacerbate the damage caused, in an age-dependent manner

    Propulsion Study for Small Transport Aircraft Technology (STAT)

    Get PDF
    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988

    Reduced ventricular proliferation in the foetal cortex following maternal inflammation in the mouse

    Get PDF
    It has been well established that maternal inflammation during pregnancy alters neurological function in the offspring, but its impact on cortical development and long-term consequences on the cytoarchitecture is largely unstudied. Here we report that lipopolysaccharide-induced systemic maternal inflammation in C57Bl/6 mice at embryonic Day 13.5 of pregnancy, as early as 8 h after challenge, caused a significant reduction in cell proliferation in the ventricular zone of the developing cerebral cortex, as revealed by quantification of anti-phospho-Histone H3 immunoreactivity and bromodeoxyuridine pulse labelling. The angle of mitotic cleavage, determined from analysis of haematoxylin and eosin staining, cyclin E1 gene expression and the pattern of β-catenin immunoreactivity were also altered by the challenge, which suggests a change from symmetric to asymmetric division in the radial progenitor cells. Modifications of cortical lamination and gene expression patterns were detected at post-natal Day 8 suggesting prolonged consequences of these alterations during embryonic development. Cellular uptake of proteins from the cerebrospinal fluid was observed in brains from lipopolysaccharide-treated animals in radial progenitor cells. However, the foetal blood–brain barrier to plasma proteins remained intact. Together, these results indicate that maternal inflammation can disrupt the ventricular surface and lead to decreased cellular proliferation. Changes in cell density in Layers IV and V at post-natal Day 8 show that these initial changes have prolonged effects on cortical organization. The possible shift in the fate of progeny and the resulting alterations in the relative cell numbers in the cerebral cortex following a maternal inflammatory response shown here will require further investigation to determine the long-term consequences of inflammation on the development of neuronal circuitry and behaviour

    TNF deficiency causes alterations in the spatial organization of neurogenic zones and alters the number of microglia and neurons in the cerebral cortex

    Get PDF
    •TNF deficiency alters the spatial organization of neurogenic zones.•TNF deficiency decreases WNT signaling-related proteins.•TNF deficiency alters neuronal and microglial numbers.•Long-term use of non-selective TNF inhibitors impairs learning and memory.•Long-term use of the soluble TNF selective inhibitor XPro1595 does not affect neurogenesis, learning and memory. Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF−/−) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF−/− mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF−/− mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment
    corecore