90 research outputs found

    Wegner bounds for a two-particle tight binding model

    Full text link
    We consider a quantum two-particle system on a d-dimensional lattice with interaction and in presence of an IID external potential. We establish Wegner-typer estimates for such a model. The main tool used is Stollmann's lemma

    Multi-Particle Anderson Localisation: Induction on the Number of Particles

    Full text link
    This paper is a follow-up of our recent papers \cite{CS08} and \cite{CS09} covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum NN-particle system on a lattice Zd\Z^d with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. \cite{FS}, \cite{FMSS}, \cite{DK}) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript \cite{CS07}. Similar results have been recently obtained in an independent work by Aizenman and Warzel \cite{AW08}: they proposed an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in \cite{AM93} and \cite{ASFH01} (see also references therein) which is also combined with an induction on the number of particles. An important role in our proof is played by a variant of Stollmann's eigenvalue concentration bound (cf. \cite{St00}). This result, as was proved earlier in \cite{C08}, admits a straightforward extension covering the case of multi-particle systems with correlated external random potentials: a subject of our future work. We also stress that the scheme of our proof is \textit{not} specific to lattice systems, since our main method, the MSA, admits a continuous version. A proof of multi-particle Anderson localization in continuous interacting systems with various types of external random potentials will be published in a separate papers

    Erratum to: From Uncertainty Principles to Wegner Estimates

    Full text link

    The Density of States and the Spectral Shift Density of Random Schroedinger Operators

    Full text link
    In this article we continue our analysis of Schroedinger operators with a random potential using scattering theory. In particular the theory of Krein's spectral shift function leads to an alternative construction of the density of states in arbitrary dimensions. For arbitrary dimension we show existence of the spectral shift density, which is defined as the bulk limit of the spectral shift function per unit interaction volume. This density equals the difference of the density of states for the free and the interaction theory. This extends the results previously obtained by the authors in one dimension. Also we consider the case where the interaction is concentrated near a hyperplane.Comment: 1 figur

    Leaky quantum graphs: approximations by point interaction Hamiltonians

    Full text link
    We prove an approximation result showing how operators of the type −Δ−γδ(x−Γ)-\Delta -\gamma \delta (x-\Gamma) in L2(R2)L^2(\mathbb{R}^2), where Γ\Gamma is a graph, can be modeled in the strong resolvent sense by point-interaction Hamiltonians with an appropriate arrangement of the δ\delta potentials. The result is illustrated on finding the spectral properties in cases when Γ\Gamma is a ring or a star. Furthermore, we use this method to indicate that scattering on an infinite curve Γ\Gamma which is locally close to a loop shape or has multiple bends may exhibit resonances due to quantum tunneling or repeated reflections.Comment: LaTeX 2e, 31 pages with 18 postscript figure

    Essential self-adjointness, generalized eigenforms, and spectra for the ∂ˉ\bar\partial-Neumann problem on GG-manifolds

    Full text link
    Let MM be a strongly pseudoconvex complex manifold which is also the total space of a principal GG-bundle with GG a Lie group and compact orbit space Mˉ/G\bar M/G. Here we investigate the ∂ˉ\bar\partial-Neumann Laplacian on MM. We show that it is essentially self-adjoint on its restriction to compactly supported smooth forms. Moreover we relate its spectrum to the existence of generalized eigenforms: an energy belongs to σ(□)\sigma(\square) if there is a subexponentially bounded generalized eigenform for this energy. Vice versa, there is an expansion in terms of these well-behaved eigenforms so that, spectrally, almost every energy comes with such a generalized eigenform.Comment: 25 page

    Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds

    Full text link
    We extend classical Euclidean stability theorems corresponding to the nonrelativistic Hamiltonians of ions with one electron to the setting of non parabolic Riemannian 3-manifolds.Comment: 20 pages; to appear in Annales Henri Poincar

    Localization for a matrix-valued Anderson model

    Full text link
    We study localization properties for a class of one-dimensional, matrix-valued, continuous, random Schr\"odinger operators, acting on L^2(\R)\otimes \C^N, for arbitrary N≥1N\geq 1. We prove that, under suitable assumptions on the F\"urstenberg group of these operators, valid on an interval I⊂RI\subset \R, they exhibit localization properties on II, both in the spectral and dynamical sense. After looking at the regularity properties of the Lyapunov exponents and of the integrated density of states, we prove a Wegner estimate and apply a multiscale analysis scheme to prove localization for these operators. We also study an example in this class of operators, for which we can prove the required assumptions on the F\"urstenberg group. This group being the one generated by the transfer matrices, we can use, to prove these assumptions, an algebraic result on generating dense Lie subgroups in semisimple real connected Lie groups, due to Breuillard and Gelander. The algebraic methods used here allow us to handle with singular distributions of the random parameters
    • …
    corecore