64 research outputs found
Electrons in High-Tc Compounds: Ab-Initio Correlation Results
Electronic correlations in the ground state of an idealized infinite-layer
high-Tc compound are computed using the ab-initio method of local ansatz.
Comparisons are made with the local-density approximation (LDA) results, and
the correlation functions are analyzed in detail. These correlation functions
are used to determine the effective atomic-interaction parameters for model
Hamiltonians. On the resulting model, doping dependencies of the relevant
correlations are investigated. Aside from the expected strong atomic
correlations, particular spin correlations arise. The dominating contribution
is a strong nearest neighbor correlation that is Stoner-enhanced due to the
closeness of the ground state to the magnetic phase. This feature depends
moderately on doping, and is absent in a single-band Hubbard model. Our
calculated spin correlation function is in good qualitative agreement with that
determined from the neutron scattering experiments for a metal.Comment: 21pp, 5fig, Phys. Rev. B (Oct. 98
Anti-ferromagnetism, spin-phonon interaction and the local-density approximation in high-T superconductors
Results from different sets of band calculations for undoped and doped
HgBaCuO show that small changes in localization can lead to very
different ground states.
The normal LDA results are compared with 'modified' LDA results, in which
different linearization energies make the O-p band more localized. The ground
states in the normal calculations are far from the anti-ferromagnetic ones,
while nearly AFM states are found in the modified calculations. The proximity
of an AFM state in the doped system leads to increased , and the
modified band structure has favorable conditions for spin-phonon coupling and
superconductivity mediated by spin fluctuations.Comment: 4 pages, 2 figs., Accepted in J. Physics: Condensed Matter as a
lette
Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model
We have studied electron correlations in the doped two-dimensional (2D)
Hubbard model by using the coupled-cluster method (CCM) to investigate whether
or not the method can be applied to correct the independent particle
approximations actually used in ab-initio band calculations. The double
excitation version of the CCM, implemented using the approximate coupled pair
(ACP) method, account for most of the correlation energies of the 2D Hubbard
model in the weak () and the intermediate regions (). The error is always less than 1% there. The ACP approximation gets
less accurate for large () and/or near half-filling.
Further incorporation of electron correlation effects is necessary in this
region. The accuracy does not depend on the system size and the gap between the
lowest unoccupied level and the highest occupied level due to the finite size
effect. Hence, the CCM may be favorably applied to ab-initio band calculations
on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure
Local-Ansatz Approach with Momentum Dependent Variational Parameters to Correlated Electron Systems
A new wavefunction which improves the Gutzwiller-type local ansatz method has
been proposed to describe the correlated electron system. The ground-state
energy, double occupation number, momentum distribution function, and
quasiparticle weight have been calculated for the half-filled band Hubbard
model in infinite dimensions. It is shown that the new wavefunction improves
the local-ansatz approach (LA) proposed by Stollhoff and Fulde. Especially,
calculated momentum distribution functions show a reasonable momentum
dependence. The result qualitatively differs from those obtained by the LA and
the Gutzwiller wavefunction. Furthermore, the present approach combined with
the projection operator method CPA is shown to describe quantitatively the
excitation spectra in the insulator regime as well as the critical Coulomb
interactions for a gap formation in infinite dimensions.Comment: To be published in Phys. Soc. Jpn. 77 No.11 (2008
Magnetic phases near the Van Hove singularity in s- and d-band Hubbard model
We investigate the magnetic instabilities of the nondegenerate (s-band) and a
degenerate (d-band) Hubbard model in two dimensions using many-body effects due
to the particle-particle diagrams and Hund's rule local correlations. The
density of states and the position of Van Hove singularity change depending on
the value of next-nearest neighbor hopping t'. The Stoner parameter is strongly
reduced in the s-band case, and ferromagnetism survives only if electron
density is small, and the band is almost flat at small momenta due to
next-nearest neighbor hopping. In contrast, for the d-band case the reduction
of the Stoner parameter which follows from particle-particle correlations is
much smaller and ferromagnetism survives to a large extent. Inclusion of local
spin-spin correlations has a limited destabilizing effect on the magnetic
states.Comment: 8 pages, 7 figure
Magnetic Properties of Undoped
The Heisenberg antiferromagnet, which arises from the large Hubbard
model, is investigated on the molecule and other fullerenes. The
connectivity of leads to an exotic classical ground state with
nontrivial topology. We argue that there is no phase transition in the Hubbard
model as a function of , and thus the large solution is relevant for
the physical case of intermediate coupling. The system undergoes a first order
metamagnetic phase transition. We also consider the S=1/2 case using
perturbation theory. Experimental tests are suggested.Comment: 12 pages, 3 figures (included
Nonperturbative approach to the Hubbard model in C60 cluster
We propose a computational scheme for the Hubbard model in the C60 cluster in
which the interaction with the Fermi sea of charges added to the neutral
molecule is switched on sequentially. This is applied to the calculation of the
balance of charging energies, within a low-energy truncation of the space of
states which produces moderate errors for an intermediate range of the
interaction strength.Comment: 5 pages, Revtex, 2 figure
Multi-band Gutzwiller wave functions for general on-site interactions
We introduce Gutzwiller wave functions for multi-band models with general
on-site Coulomb interactions. As these wave functions employ correlators for
the exact atomic eigenstates they are exact both in the non-interacting and in
the atomic limit. We evaluate them in infinite lattice dimensions for all
interaction strengths without any restrictions on the structure of the
Hamiltonian or the symmetry of the ground state. The results for the
ground-state energy allow us to derive an effective one-electron Hamiltonian
for Landau quasi-particles, applicable for finite temperatures and frequencies
within the Fermi-liquid regime. As applications for a two-band model we study
the Brinkman-Rice metal-to-insulator transition at half band-filling, and the
transition to itinerant ferromagnetism for two specific fillings, at and close
to a peak in the density of states of the non-interacting system. Our new
results significantly differ from those for earlier Gutzwiller wave functions
where only density-type interactions were included. When the correct spin
symmetries for the two-electron states are taken into account, the importance
of the Hund's-rule exchange interaction is even more pronounced and leads to
paramagnetic metallic ground states with large local magnetic moments.
Ferromagnetism requires fairly large interaction strengths, and the resulting
ferromagnetic state is a strongly correlated metal.Comment: 37 pages, 10 figures; accepted for publication in Phys. Rev. B 57
(March 15, 1998
Electron correlations for ground state properties of group IV semiconductors
Valence energies for crystalline C, Si, Ge, and Sn with diamond structure
have been determined using an ab-initio approach based on information from
cluster calculations. Correlation contributions, in particular, have been
evaluated in the coupled electron pair approximation (CEPA), by means of
increments obtained for localized bond orbitals and for pairs and triples of
such bonds. Combining these results with corresponding Hartree-Fock (HF) data,
we recover about 95 % of the experimental cohesive energies. Lattice constants
are overestimated at the HF level by about 1.5 %; correlation effects reduce
these deviations to values which are within the error bounds of this method. A
similar behavior is found for the bulk modulus: the HF values which are
significantly too high are reduced by correlation effects to about 97 % of the
experimental values.Comment: 22 pages, latex, 2 figure
Excitation spectrum of the homogeneous spin liquid
We discuss the excitation spectrum of a disordered, isotropic and
translationally invariant spin state in the 2D Heisenberg antiferromagnet. The
starting point is the nearest-neighbor RVB state which plays the role of the
vacuum of the theory, in a similar sense as the Neel state is the vacuum for
antiferromagnetic spin wave theory. We discuss the elementary excitations of
this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1
excited dimers which must be modeled by bond Bosons. We derive an effective
Hamiltonian describing the excited dimers which is formally analogous to spin
wave theory. Condensation of the bond-Bosons at zero temperature into the state
with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering.
The latter is a key ingredient for a microscopic interpretation of Zhang's
SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of
figures (or the entire manuscript) can be obtained by e-mail request to:
[email protected]
- …