14 research outputs found
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Recommended from our members
Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses.
The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response
Chromatin association and regulation of rDNA transcription by the Ras-family protein RasL11a
RasL11a and RasL11b are Ras super-family proteins of unknown function. Here, we show that RasL11a is a chromatin-associated modulator of pre-ribosomal RNA (pre-rRNA) synthesis. RasL11a was found in the nucleolus of interphase mouse fibroblasts, where it co-localized with the RNA polymerase I-specific transcription factor UBF. Similar to UBF, RasL11a also marked the active subset of rDNA repeats (also called nucleolar organizers, or NORs) on mitotic chromosomes. In cells, RasL11a existed in stable complexes with UBF and, as shown by chromatin immunoprecipitation, distributed along the rDNA transcription unit. Upon treatment of cells with actinomycin D, RasL11a and UBF persisted on the transcription unit beyond the release of RNA polymerase I, and remained co-localized in peri-nucleolar cap structures. Ectopic expression of RasL11a enhanced pre-rRNA levels in cells, whereas RasL11a knockdown had the opposite effect. In transient transfection experiments, RasL11a enhanced the transcriptional activity of an RNA polymerase I-specific reporter controlled by the rDNA enhancer/promoter region. We speculate that RasL11a acts in concert with UBF to facilitate initiation and/or elongation by RNA polymerase I in response to specific upstream stimuli
Conceptual Framework and Research Design
The overarching aim of this book is to analyse the contribution of sports clubs to public welfare across different European countries. Sports clubs are firstly concep-tualised as voluntary organisations. Then a multi-level conceptual framework is de-veloped to consider the following three analytical levels: (1) historical roots and the embedment of sports clubs in society and sports policy systems (macro-level), (2) the sports club with structural characteristics, goals, resources and management (meso-level), (3) the members and volunteers and their sport activities and engage-ment in the club (micro-level). We then briefly introduce relevant research as well as important policy documents about various socio-political functions, i.e. health promotion, social integration, democratic involvement and participation as well as volunteering. The research questions that guide the analysis across the ten countries chapters are also developed. Finally, the research design of the project “Social In-clusion and Volunteering in Sports Clubs in Europe” (SIVSCE) is presented and limitations are discussed. This project collected comparable data across ten Euro-pean countries by means of the same instruments and standardised questionnaires