152 research outputs found

    Genotype 1 hepatitis C virus envelope features that determine antiviral response assessed through optimal covariance networks

    Get PDF
    The poor response to the combined antiviral therapy of pegylated alfa-interferon and ribavarin for hepatitis C virus (HCV) infection may be linked to mutations in the viral envelope gene E1E2 (env), which can result in escape from the immune response and higher efficacy of viral entry. Mutations that result in failure of therapy most likely require compensatory mutations to achieve sufficient change in envelope structure and function. Compensatory mutations were investigated by determining positions in the E1E2 gene where amino acids (aa) covaried across groups of individuals. We assessed networks of covarying positions in E1E2 sequences that differentiated sustained virological response (SVR) from non-response (NR) in 43 genotype 1a (17 SVR), and 49 genotype 1b (25 SVR) chronically HCV-infected individuals. Binary integer programming over covariance networks was used to extract aa combinations that differed between response groups. Genotype 1a E1E2 sequences exhibited higher degrees of covariance and clustered into 3 main groups while 1b sequences exhibited no clustering. Between 5 and 9 aa pairs were required to separate SVR from NR in each genotype. aa in hypervariable region 1 were 6 times more likely than chance to occur in the optimal networks. The pair 531-626 (EI) appeared frequently in the optimal networks and was present in 6 of 9 NR in one of the 1a clusters. The most frequent pairs representing SVR were 431-481 (EE), 500-522 (QA) in 1a, and 407-434 (AQ) in 1b. Optimal networks based on covarying aa pairs in HCV envelope can indicate features that are associated with failure or success to antiviral therapy

    Neutralizing Antibodies and Pathogenesis of Hepatitis C Virus Infection

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection

    Neutralizing antibodies and pathogenesis of hepatitis C virus infection.

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. The interplay between the virus and host innate and adaptive immune responses determines the outcome of infection. There is increasing evidence that host neutralizing responses play a relevant role in the resulting pathogenesis. Furthermore, viral evasion from host neutralizing antibodies has been revealed to be an important contributor in leading both to viral persistence in acute liver graft infection following liver transplantation, and to chronic viral infection. The development of novel model systems to study HCV entry and neutralization has allowed a detailed understanding of the molecular mechanisms of virus-host interactions during antibody-mediated neutralization. The understanding of these mechanisms will ultimately contribute to the development of novel antiviral preventive strategies for liver graft infection and an urgently needed vaccine. This review summarizes recent concepts of the role of neutralizing antibodies in viral clearance and protection, and highlights consequences of viral escape from neutralizing antibodies in the pathogenesis of HCV infection

    Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation

    Get PDF
    End-stage liver disease caused by chronic hepatitis C virus (HCV) infection is a leading cause for liver transplantation (LT). Due to viral evasion from host immune responses and the absence of preventive antiviral strategies, reinfection of the graft is universal. The mechanisms by which the virus evades host immunity to reinfect the liver graft are unknown. In a longitudinal analysis of six HCV-infected patients undergoing LT, we demonstrate that HCV variants reinfecting the liver graft were characterized by efficient entry and poor neutralization by antibodies present in pretransplant serum compared with variants not detected after transplantation. Monoclonal antibodies directed against HCV envelope glycoproteins or a cellular entry factor efficiently cross-neutralized infection of human hepatocytes by patient-derived viral isolates that were resistant to autologous host-neutralizing responses. These findings provide significant insights into the molecular mechanisms of viral evasion during HCV reinfection and suggest that viral entry is a viable target for prevention of HCV reinfection of the liver graft

    T- and B-cell responses to multivalent prime-boost DNA and viral vectored vaccine combinations against hepatitis C virus in non-human primates.

    Get PDF
    Immune responses against multiple epitopes are required for the prevention of hepatitis C virus (HCV) infection, and the progression to phase I trials of candidates may be guided by comparative immunogenicity studies in non-human primates. Four vectors, DNA, SFV, human serotype 5 adenovirus (HuAd5) and Modified Vaccinia Ankara (MVA) poxvirus, all expressing hepatitis C virus Core, E1, E2 and NS3, were combined in three prime-boost regimen, and their ability to elicit immune responses against HCV antigens in rhesus macaques was explored and compared. All combinations induced specific T-cell immune responses, including high IFN-Îł production. The group immunized with the SFV+MVA regimen elicited higher E2-specific responses as compared with the two other modalities, while animals receiving HuAd5 injections elicited lower IL-4 responses as compared with those receiving MVA. The IFN-Îł responses to NS3 were remarkably similar between groups. Only the adenovirus induced envelope-specific antibody responses, but these failed to show neutralizing activity. Therefore, the two novel regimens failed to induce superior responses as compared with already existing HCV vaccine candidates. Differences were found in response to envelope proteins, but the relevance of these remain uncertain given the surprisingly poor correlation with immunogenicity data in chimpanzees, underlining the difficulty to predict efficacy from immunology studies.This work was supported by European Union contract QLK2-CT-1999- 00356, by the Biomedical Primate Research Centre, The Netherlands, and by the Swedish Research Council. We are grateful to Alexander van den Berg for technical assistance with the ICS, to our colleagues from Animal Science Department for technical assistance and expert care of the macaques, to the participants of the European HCVacc Cluster who provided help and support, and to Thomas Darton (Oxford Vaccine Group, UK) for input and advice on the manuscript. Christine Rollier is an Oxford Martin fellow and a Jenner Insitute Investigator.This is the author accepted manuscript. The final version is available from Nature Publishing Group at https://doi.org/10.1038/gt.2016.55

    Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma

    Get PDF
    Objectives The neurological disorders in HIV-1-infected patients remain prevalent. The HIV-1 resistance in plasma and CSF was compared in patients with neurological disorders in a multicentre study. Methods Blood and CSF samples were collected at time of neurological disorders for 244 patients. The viral loads were >50 copies/mL in both compartments and bulk genotypic tests were realized. Results On 244 patients, 89 and 155 were antiretroviral (ARV) naive and ARV treated, respectively. In ARV-naive patients, detection of mutations in CSF and not in plasma were reported for the reverse transcriptase (RT) gene in 2/89 patients (2.2%) and for the protease gene in 1/89 patients (1.1%). In ARV-treated patients, 19/152 (12.5%) patients had HIV-1 mutations only in the CSF for the RT gene and 30/151 (19.8%) for the protease gene. Two mutations appeared statistically more prevalent in the CSF than in plasma: M41L (P = 0.0455) and T215Y (P = 0.0455). Conclusions In most cases, resistance mutations were present and similar in both studied compartments. However, in 3.4% of ARV-naive and 8.8% of ARV-treated patients, the virus was more resistant in CSF than in plasma. These results support the need for genotypic resistance testing when lumbar puncture is performe

    Understanding Variation in Sets of N-of-1 Trials.

    Get PDF
    A recent paper in this journal by Chen and Chen has used computer simulations to examine a number of approaches to analysing sets of n-of-1 trials. We have examined such designs using a more theoretical approach based on considering the purpose of analysis and the structure as regards randomisation that the design uses. We show that different purposes require different analyses and that these in turn may produce quite different results. Our approach to incorporating the randomisation employed when the purpose is to test a null hypothesis of strict equality of the treatment makes use of Nelder's theory of general balance. However, where the purpose is to make inferences about the effects for individual patients, we show that a mixed model is needed. There are strong parallels to the difference between fixed and random effects meta-analyses and these are discussed

    Differential flow improvements after valve replacements in bicuspid aortic valve disease: a cardiovascular magnetic resonance assessment

    Get PDF
    Background Abnormal aortic flow patterns in bicuspid aortic valve disease (BAV) may be partly responsible for the associated aortic dilation. Aortic valve replacement (AVR) may normalize flow patterns and potentially slow the concomitant aortic dilation. We therefore sought to examine differences in flow patterns post AVR. Methods Ninety participants underwent 4D flow cardiovascular magnetic resonance: 30 BAV patients with prior AVR (11 mechanical, 10 bioprosthetic, 9 Ross procedure), 30 BAV patients with a native aortic valve and 30 healthy subjects. Results The majority of subjects with mechanical AVR or Ross showed normal flow pattern (73% and 67% respectively) with near normal rotational flow values (7.2 ± 3.9 and 10.6 ± 10.5 mm2/ms respectively vs 3.8 ± 3.1 mm2/s for healthy subjects; both p > 0.05); and reduced in-plane wall shear stress (0.19 ± 0.13 N/m2for mechanical AVR vs. 0.40 ± 0.28 N/m2 for native BAV, p  0.05), and a similar pattern for wall shear stress. Data before and after AVR (n = 16) supported these findings: mechanical AVR showed a significant reduction in rotational flow (30.4 ± 16.3 → 7.3 ± 4.1 mm2/ms; p < 0.05) and in-plane wall shear stress (0.47 ± 0.20 → 0.20 ± 0.13 N/m2; p < 0.05), whereas these parameters remained similar in the bioprosthetic AVR group. Conclusions Abnormal flow patterns in BAV disease tend to normalize after mechanical AVR or Ross procedure, in contrast to the remnant abnormal flow pattern after bioprosthetic AVR. This may in part explain different aortic growth rates post AVR in BAV observed in the literature, but requires confirmation in a prospective study
    • …
    corecore