57 research outputs found

    Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy

    Get PDF
    Background: The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. Methods: The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. Results: The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. Conclusions: These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment

    Trend of sexually transmitted infections during the Covid-19 age. What was the impact of the pandemic and the social distancing measures?

    Get PDF
    Covid-19 pandemic has led to social distancing guidelines andresource allocation with subsequent impairment of sexual healthservices. The impact of such measures and the recommendationsregarding changes of sexual behaviour is a matter of debate

    A Possible Outbreak by Serratia Marcescens: Genetic Relatedness between Clinical and Environmental Strains

    Get PDF
    Serratia marcescens (SM) is a Gram-negative bacterium that is frequently found in the environment. Since 1913, when its pathogenicity was first demonstrated, the number of infections caused by SM has increased. There is ample evidence that SM causes nosocomial infections in immunocompromised or critically ill patients admitted to the intensive care units (ICUs), but also in newborns admitted to neonatal ICUs (NICUs). In this study, we evaluated the possible genetic correlation by PFGE between clinical and environmental SM strains from NICU and ICU and compared the genetic profile of clinical strains with strains isolated from patients admitted to other wards of the same hospital. We found distinct clonally related groups of SM strains circulating among different wards of a large university hospital. In particular, the clonal relationship between clinical and environmental strains in NICU and ICU 1 was highlighted. The identification of clonal relationships between clinical and environmental strains in the wards allowed identification of the epidemic and rapid implementation of adequate measures to stop the spread of SM

    First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    Get PDF
    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 \ub0C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 \ub0C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450\u3bcm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline. \ua9 2015 Elsevier B.V

    PLoS Pathog

    Get PDF
    The treatment of schistosomiasis, a disease caused by blood flukes parasites of the Schistosoma genus, depends on the intensive use of a single drug, praziquantel, which increases the likelihood of the development of drug-resistant parasite strains and renders the search for new drugs a strategic priority. Currently, inhibitors of human epigenetic enzymes are actively investigated as novel anti-cancer drugs and have the potential to be used as new anti-parasitic agents. Here, we report that Schistosoma mansoni histone deacetylase 8 (smHDAC8), the most expressed class I HDAC isotype in this organism, is a functional acetyl-L-lysine deacetylase that plays an important role in parasite infectivity. The crystal structure of smHDAC8 shows that this enzyme adopts a canonical alpha/beta HDAC fold, with specific solvent exposed loops corresponding to insertions in the schistosome HDAC8 sequence. Importantly, structures of smHDAC8 in complex with generic HDAC inhibitors revealed specific structural changes in the smHDAC8 active site that cannot be accommodated by human HDACs. Using a structure-based approach, we identified several small-molecule inhibitors that build on these specificities. These molecules exhibit an inhibitory effect on smHDAC8 but show reduced affinity for human HDACs. Crucially, we show that a newly identified smHDAC8 inhibitor has the capacity to induce apoptosis and mortality in schistosomes. Taken together, our biological and structural findings define the framework for the rational design of small-molecule inhibitors specifically interfering with schistosome epigenetic mechanisms, and further support an anti-parasitic epigenome targeting strategy to treat neglected diseases caused by eukaryotic pathogens
    corecore