1,511 research outputs found

    Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebra: detection of non-Gaussian entangled states

    Full text link
    We derive a class of inequalities, from the uncertainty relations of the SU(1,1) and the SU(2) algebra in conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequalities are presented in terms of the su(2) operators J_x, J_y, and the total photon number N_a+N_b. They include as special cases the inequality derived by Hillery and Zubairy [Phys. Rev. Lett. 96, 050503 (2006)], and the one by Agarwal and Biswas [New J. Phys. 7, 211 (2005)]. In particular, optimization over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su(2) minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially the one using linear optical devices and photodetectors.Comment: published version, presentation polished with references added, 7 pages, 4 figure

    Scaling and Duality in Semi-exclusive Processes

    Full text link
    We discuss extending scaling and duality studies to semi-exclusive processes. We show that semi-exclusive hard pion photoproduction should exhibit scaling behavior in kinematic regions where the photon and pion both interact directly with the same quark. We show that such kinematic regions exist. We also show that the constancy with changing momentum transfer of the resonance peak/scaling curve ratio, familiar for many resonances in deep inelastic scattering, is also expected in the semi-exclusive case.Comment: 8 pages, 4 figures, submitted to Phys.Rev.

    Linear amplification and quantum cloning for non-Gaussian continuous variables

    Get PDF
    We investigate phase-insensitive linear amplification at the quantum limit for single- and two-mode states and show that there exists a broad class of non-Gaussian states whose nonclassicality survives even at an arbitrarily large gain. We identify the corresponding observable nonclassical effects and find that they include, remarkably, two-mode entanglement. The implications of our results for quantum cloning outside the Gaussian regime are also addressed.Comment: published version with reference updat

    Single-shot measurement of quantum optical phase

    Full text link
    Although the canonical phase of light, which is defined as the complement of photon number, has been described theoretically by a variety of distinct approaches, there have been no methods proposed for its measurement. Indeed doubts have been expressed about whether or not it is measurable. Here we show how it is possible, at least in principle, to perform a single-shot measurement of canonical phase using beam splitters, mirrors, phase shifters and photodetectors.Comment: This paper was published in PRL in 2002 but, at the time, was not placed on the archive. It is included now to make accessing this paper easie

    Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

    Full text link
    We introduce the NN-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-QQ cavity. We finally discuss the implementation of the proposed schemes.Comment: 4 pages, 3 figures. Title changed (published version

    Quantum state engineering via unitary transformations

    Get PDF
    We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field. The proposition is based upon the fact that a unitary transformation for the generation of number states has been already found. The general unitary transformation here obtained, would allow the use of nonlinear interactions for the production of pure states. We discuss the applicability of this method by giving examples of generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the interaction of trapped ions with two laser fields.Comment: 5 pages in RevTeX, no figures, accepted for publication in Phys. Rev.

    Theory Support for the Excited Baryon Program at the Jlab 12 GeV Upgrade

    Get PDF
    This document outlines major directions in theoretical support for the measurement of nucleon resonance transition form factors at the JLab 12 GeV upgrade with the CLAS12 detector. Using single and double meson production, prominent resonances in the mass range up to 2 GeV will be studied in the range of photon virtuality Q2Q^2 up to 12 GeV2^2 where quark degrees of freedom are expected to dominate. High level theoretical analysis of these data will open up opportunities to understand how the interactions of dressed quarks create the ground and excited nucleon states and how these interactions emerge from QCD. The paper reviews the current status and the prospects of QCD based model approaches that relate phenomenological information on transition form factors to the non-perturbative strong interaction mechanisms, that are responsible for resonance formation.Comment: 52 pages, 19 figures, White Paper of the Electromagnetic N-N* Transition Form Factor Workshop at Jefferson Lab, October 13-15, 2008, Newport News, VA, US

    Entanglement of fields in coupled-cavities: effects of pumping and fluctuations

    Full text link
    A system of two coupled cavities is studied in the context of bipartite, continuous variable entanglement. One of the cavities is pumped by an external classical source that is coupled quadratically, to the cavity field. Dynamics of entanglement, quantified by covariance measure [Dodonov {\it et al}, Phys. Lett A {\bf 296}, (2002) 73], in the presence of cavity-cavity coupling and external pumping is investigated. The importance of tailoring the coupling between the cavities is brought out by studying the effects of pump fluctuations on the entanglement.Comment: 20 pages; 6 figure

    Roper excitation in p⃗+α→p⃗+α+X\vec{p}+\alpha \to \vec{p}+\alpha+X reactions

    Full text link
    We calculate differential cross sections and the spin transfer coefficient DnnD_{nn} in the p⃗+α→p⃗+α+π0\vec{p}+\alpha \to \vec{p}+\alpha+\pi^0 reaction for proton bombarding energies from 1 to 10 GeV and π0−p\pi^0 - p invariant masses spanning the region of the N∗^*(1440) Roper resonance. Two processes -- Δ\Delta excitation in the α\alpha-particle and Roper excitation in the proton -- are included in an effective reaction model which was shown previously to reproduce existing inclusive spectra. The present calculations demonstrate that these two contributions can be clearly distinguished via DnnD_{nn}, even under kinematic conditions where cross sections alone exhibit no clear peak structure due to the excitation of the Roper.Comment: 12 pages, 11 ps figures, Late

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η−\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate
    • 

    corecore