1,214 research outputs found

    Sum Rule Description of Color Transparency

    Full text link
    The assumption that a small point-like configuration does not interact with nucleons leads to a new set of sum rules that are interpreted as models of the baryon-nucleon interaction. These models are rendered semi-realistic by requiring consistency with data for cross section fluctuations in proton-proton diffractive collisions.Comment: 22 pages + 3 postscript figures attache

    Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities

    Get PDF
    We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.Comment: 5 pages, 1 figur

    Linear amplification and quantum cloning for non-Gaussian continuous variables

    Get PDF
    We investigate phase-insensitive linear amplification at the quantum limit for single- and two-mode states and show that there exists a broad class of non-Gaussian states whose nonclassicality survives even at an arbitrarily large gain. We identify the corresponding observable nonclassical effects and find that they include, remarkably, two-mode entanglement. The implications of our results for quantum cloning outside the Gaussian regime are also addressed.Comment: published version with reference updat

    Phase properties of hypergeometric states and negative hypergeometric states

    Get PDF
    We show that the three quantum states (Poˊ\acute{o}lya states, the generalized non-classical states related to Hahn polynomials and negative hypergeometric states) introduced recently as intermediates states which interpolate between the binomial states and negative binomial states are essentially identical. By using the Hermitial-phase-operator formalism, the phase properties of the hypergeometric states and negative hypergeometric states are studied in detail. We find that the number of peaks of phase probability distribution is one for the hypergeometric states and MM for the negative hypergeometric states.Comment: 7 pages, 4 figure

    Statistics of Raman-Active Excitations via Masurement of Stokes-Anti-Stokes Correlations

    Full text link
    A general fundamental relation connecting the correlation of Stokes and anti-Stokes modes to the quantum statistical behavior of vibration and pump modes in Raman-active materials is derived. We show that under certain conditions this relation can be used to determine the equilibrium number variance of phonons.Time and temperature ranges for which such conditions can be satisfied are studied and found to be available in todays' experimental standards. Furthermore, we examine the results in the presence of multi-mode pump as well as for the coupling of pump to the many vibration modes and discuss their validity in these cases.Comment: 12 pages, 1 figure, accepted for publication in Phys.Rev.

    Roper excitation in p+αp+α+X\vec{p}+\alpha \to \vec{p}+\alpha+X reactions

    Full text link
    We calculate differential cross sections and the spin transfer coefficient DnnD_{nn} in the p+αp+α+π0\vec{p}+\alpha \to \vec{p}+\alpha+\pi^0 reaction for proton bombarding energies from 1 to 10 GeV and π0p\pi^0 - p invariant masses spanning the region of the N^*(1440) Roper resonance. Two processes -- Δ\Delta excitation in the α\alpha-particle and Roper excitation in the proton -- are included in an effective reaction model which was shown previously to reproduce existing inclusive spectra. The present calculations demonstrate that these two contributions can be clearly distinguished via DnnD_{nn}, even under kinematic conditions where cross sections alone exhibit no clear peak structure due to the excitation of the Roper.Comment: 12 pages, 11 ps figures, Late

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate

    Approach to Perturbative Results in the N-Delta Transition

    Full text link
    We show that constraints from perturbative QCD calculations play a role in the nucleon to Delta(1232) electromagnetic transition even at moderate momentum transfer scales. The pQCD constraints, tied to real photoproduction data and unseparated resonance response functions, lead to explicit forms for the helicity amplitudes wherein the E2/M1 ratio remains small at moderately large momentum transfer.Comment: 4 pages, 2 figures, ReVTe

    Frequency of and Prognostic Significance of Atrial Fibrillation in Patients Undergoing Transcatheter Aortic Valve Implantation

    Get PDF
    The prognostic implications of preexisting atrial fibrillation (AF) and new-onset AF (NOAF) in transcatheter aortic valve implantation (TAVI) remain uncertain. This study assesses the epidemiology of AF in patients treated with TAVI and evaluates their outcomes according to the presence of preexisting AF or NOAF. A retrospective analysis of 708 patients undergoing TAVI from 2 heart hospitals was performed. Patients were divided into 3 study groups: sinus rhythm (n = 423), preexisting AF (n = 219), and NOAF (n = 66). Primary outcomes of interest were all-cause death and stroke both at 30-day and at 1-year follow-up. Preexisting AF was present in 30.9% of our study population, whereas NOAF was observed in 9.3% of patients after TAVI. AF and NOAF patients showed a higher rate of 1-year all-cause mortality compared with patients in sinus rhythm (14.6% vs 6.5% for preexisting AF and 16.3% vs 6.5% for NOAF, p = 0.007). No differences in 30-day mortality were observed between groups. In patients with AF (either preexisting and new-onset), those discharged with single antiplatelet therapy displayed higher mortality rates at 1 year (42.9% vs 11.7%, p = 0.006). Preexisting AF remained an independent predictor of mortality at 1-year follow-up (hazard ratio [HR] 2.34, 95% CI 1.22 to 4.48, p = 0.010). Independent predictors of NOAF were transapical and transaortic approach as well as balloon postdilatation (HR 3.48, 95% CI 1.66 to 7.29, p = 0.001; HR 5.08, 95% CI 2.08 to 12.39, p <0.001; HR 2.76, 95% CI 1.25 to 6.08, p = 0.012, respectively). In conclusion, preexisting AF is common in patients undergoing TAVI and is associated with a twofold increased risk of 1-year mortality. This negative effect is most pronounced in patients discharged with single antiplatelet therapy compared with other antithrombotic regimens

    Position-momentum local realism violation of the Hardy type

    Get PDF
    We show that it is, in principle, possible to perform local realism violating experiments of the Hardy type in which only position and momentum measurements are made on two particles emanating from a common source. In the optical domain, homodyne detection of the in-phase and out-of-phase amplitude components of an electromagnetic field is analogous to position and momentum measurement. Hence, local realism violations of the Hardy type are possible in optical systems employing only homodyne detection.Comment: 10 pages, no figures, to be published in Physical Review
    corecore