9 research outputs found

    The role of IL 33/ST2 pathway in innate immune response in airway inflammation

    Get PDF
    Asthma is a common and complex inflammatory disease of the airways characterized by deregulated immune responses that involves activation of multiple cell types including Th2 cells, IgE producing B cells, mast cells, basophils and eosinophils as well as resident lung cells such as epithelial, smooth muscle cells and macrophages. Despite intensive research, there are still unmet needs in the treatment of asthma. Recently, a new cytokine of IL 1 family, named IL 33 emerged as a potentially important factor in the immunopathogenesis of allergy and asthma. It was recently shown in our laboratory that intranasal administration of IL 33 can induce certain physiological features that are characteristic of experimental asthma, such as eosinophilic inflammation, Th2 cytokine and antibody production as well as increased airway hyperresponsiveness. The effect of IL 33 on the activation and differentiation of allergen specific Th2 cells has been well studied. However, the contribution of IL 33 to the activation of lung resident and inflammatory innate cells remains undefined. In this project I focused on alveolar macrophages and eosinophils as both cell types were reported to express IL 33R, ST2L and are thought to play a crucial role in asthma pathogenesis. I raised the hypothesis that IL 33 released locally in the lungs may trigger symptoms resembling asthma through the activation of airway alveolar macrophages. Furthermore, I hypothesize that IL 33 may exacerbate and maintain inflammation in the lungs by the direct activation of eosinophils. In our previous study we showed that IL 33 could switch the quiescent phenotype of alveolar macrophages toward the alternatively activated phenotype (M2, AAM). In the first part of my thesis I looked at the consequences of this phenomenon for airway inflammation. Using clodronate liposomes in vivo I was able to eliminate macrophage population from the lungs and demonstrated that resident alveolar macrophages are crucial for the development of IL 33 induced eosinophilic inflammation in the airways. I then examined the contribution of IL 13, a known M2 differentiation factor, to airway inflammation. Using anti IL 13 neutralizing antibodies I showed that IL 13 is required for the IL 33 triggered differentiation of alveolar macrophages toward M2 phenotype as well as for eosinophilic inflammation. Next, I looked at how IL 33/ST2 pathway modulates the differentiation and activation of eosinophil. I demonstrated that bone marrow hematopoietic progenitors CD117+ express ST2L and that IL 33 is able to differentiate these cells toward eosinophils. By employing deficient mice or neutralizing antibodies I found that this process is ST2 and IL 5 dependent and independent of IL 13. I then extended my research interests to include mature mouse and human eosinophils. I showed that both human and mouse resting eosinophils express low levels of ST2L which can be markedly increased by IL 33. Moreover, I demonstrated that eosinophils that are recruited to the lungs during experimental allergic airway inflammation express high levels of ST2L. Furthermore, I carried out a study on effector function of eosinophils. I found that IL 33 induces IL 13, IL 6 and increases TARC, TGF production by mouse eosinophils. In addition, IL 33 exacerbated IgG induced human and mouse eosinophil degranulation, likely by enhancing FcRII expression. Having shown earlier that IL 13 is requited for the polarization of alveolar macrophages toward AAM by IL 33 in vitro and in light of the fact that IL 33 stimulated eosinophils can be a significant source of IL 13; I went on to investigate the interaction between macrophages and eosinophils. Using co cultures of ST2 / macrophages with WT eosinophils in Transwell system, I demonstrated that IL 33 but not IL 5 activated eosinophils can support macrophage polarization toward the pro inflammatory AAM phenotype, partially through the production of IL 13. Finally, given the role of IL 33/ST2L axis in eosinophil activation in vitro, I investigated the contribution of IL 33 activated eosinophils to airway inflammation in vivo. Using adoptive transfer protocol I showed that the contribution of IL 33 activated eosinophils to airway inflammation is mediated primarily by the release of cytokines from these cells which, in turn, recruits other inflammatory cells and supports the differentiation of alveolar macrophages towards AAM. These data show that IL 33/ST2 pathway regulates multiple features of alveolar macrophage and eosinophil biology that can have a significant impact on asthma pathophysiology in the airways. Studies carried out in our laboratory and elsewhere suggest that IL 33 is equally capable of activating other cell types that have been implicated in asthma pathology such as Th2, B1 cells, DCs, mast cells and basophils. Therefore, targeting IL 33/ST2 pathway may potentially offer a promising therapeutic approach to asthma and allergy

    Automatic identification of buy, sell and exchange offers in unstructured texts written in the Polish language

    No full text
    Artykuł prezentuje wyniki prac i eksperymentów dotyczących problemu przetwarzania niestrukturyzowanych tekstów napisanych w języku polskim w celu identyfikacji w nich ofert kupna, sprzedaży lub wymiany. W badaniach wykorzystano reguły ekstrakcji przygotowane na podstawie przeprowadzonej analizy korpusu. W artykule omówione są wybrane przykłady reprezentujące trudności, jakie niesie ze sobą omawiany problem. Opracowane podejście zostało poddane eksperymentalnej ocenie, na której podstawie skuteczność identyfikacji ofert została określona na 83% (według miary F1), natomiast określanie typu oferty (czy jest to kupno, czy sprzedaż) działa poprawnie w ponad 95% przypadków.This article presents the results of research and experimentation on processing unstructured texts written in the Polish language in order to identify which of these texts contain buy, sell or exchange offers. The approach applied was based on manually prepared rules of extraction based on an analysis of a corpus of documents obtained from the Internet (within the Semantic Monitoring of Cyberspace project). In the article, selected examples of text fragments are discussed which show what challenges had to be addressed to solve the problem. The chosen approach was then experimentally evaluated; the accuracy in identifying offers reaching 83% (according to the F1-score), while determining the offer type (whether buying or selling) was correct in over 95% of cases

    IL-33 Exacerbates Eosinophil-Mediated Airway Inflammation

    No full text
    IL-33 has emerged as an important mediator in the immunopathogenesis of allergy and asthma. However, the role of IL-33 in eosinophil-mediated inflammation has not been fully explored. In this article, we report that IL-33 directly stimulates eosinophil differentiation from CD117(+) progenitors in an IL-5-dependent manner. Although resting eosinophils expressed moderate levels of the IL-33R alpha-chain (ST2L), eosinophils that accumulated in the airways of mice with OVA-induced asthma expressed increased amounts of ST2L. In vitro, IL-33 and GM-CSF are potent inducers of ST2L expression on eosinophils, and IL-33 induced the production of IL-13, CCL17, and TGF-beta by eosinophils. In adoptive-transfer experiments, IL-33 exacerbated eosinophil-mediated airway inflammation by increasing the levels of eosinophils, macrophages, lymphocytes, IL-13, TGF-beta, CCL3, CCL17, and CCL24 in the lungs. IL-33 also enhanced the eosinophil-mediated differentiation of airway macrophages toward the alternatively activated macrophage phenotype in an IL-13-dependent manner. Taken together, this study demonstrates that the IL-33/ST2 signaling pathway activates airway eosinophils that exacerbate airway inflammation in an autocrine and paracrine manner

    A role of IL-33 in bone turnover

    No full text
    No abstract available

    A role of IL-33 in bone turnover

    No full text
    No abstract available

    IL-33 induces antigen-specific IL-5<sup>+</sup> T cells and promotes allergic-induced airway inflammation independent of IL-4

    No full text
    Type 2 cytokines (IL-4, IL-5, and IL-13) play a pivotal role in helminthic infection and allergic disorders. CD4+ T cells which produce type 2 cytokines can be generated via IL-4-dependent and -independent pathways. Although the IL-4-dependent pathway is well documented, factors that drive IL-4-independent Th2 cell differentiation remain obscure. We report here that the new cytokine IL-33, in the presence of Ag, polarizes murine and human naive CD4+ T cells into a population of T cells which produce mainly IL-5 but not IL-4. This polarization requires IL-1R-related molecule and MyD88 but not IL-4 or STAT6. The IL-33-induced T cell differentiation is also dependent on the phosphorylation of MAPKs and NF-κB but not the induction of GATA3 or T-bet. In vivo, ST2−/− mice developed attenuated airway inflammation and IL-5 production in a murine model of asthma. Conversely, IL-33 administration induced the IL-5-producing T cells and exacerbated allergen-induced airway inflammation in wild-type as well as IL-4−/− mice. Finally, adoptive transfer of IL-33-polarized IL-5+IL-4−T cells triggered airway inflammation in naive IL-4−/− mice. Thus, we demonstrate here that, in the presence of Ag, IL-33 induces IL-5-producing T cells and promotes airway inflammation independent of IL-4

    IL-33 Amplifies the Polarization of Alternatively Activated Macrophages That Contribute to Airway Inflammation

    No full text
    Alternatively activated macrophages (AAM) play a crucial role in type 2 immunity. Mice deficient in ST2, a receptor for the latest member of the IL-1 family, IL-33, have impaired type 2 immune responses. We therefore reasoned that IL-33/ST2 signaling may be involved in the differentiation and activation of AAM during airway inflammation. We report here that IL-33 changed the quiescent phenotype of alveolar macrophages toward an AAM phenotype that expressed mannose receptor, IL-4Rα, and produced high levels of CCL24 and CCL17 in an IL-13-dependent manner during IL-33-induced airway inflammation. Neutralization of AAM-derived CCL24 led to an amelioration of IL-33-induced eosinophilia in the lungs. Moreover, depletion of alveolar macrophages reduced IL-33-induced airway inflammation. Additionally, the attenuated OVA-induced airway inflammation in ST2−/− mice was associated with a decrease in AAM differentiation. In vitro, IL-33 amplified IL-13-induced polarization of alveolar- and bone marrow-derived macrophage toward an AAM phenotype by increasing the expression of arginase I, Ym1, as well as the production of CCL24 and CCL17. IL-13/IL-4Rα signaling was crucial for IL-33-driven AAM amplification by inducing the expression of ST2L. Finally, we showed that IL-33 was more abundantly expressed in the lung epithelial cells of asthma patients than those from healthy controls, suggesting that IL-33 may be involved in lung macrophage activation in clinical asthma. Taken together, we demonstrate here that IL-33/ST2 plays a significant role in the amplification of AAM polarization and chemokine production which contribute to innate and Ag-induced airway inflammation

    IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-α–mediated bone loss

    No full text
    IL-33 is a new member of the IL-1 family, which plays a crucial role in inflammatory response, enhancing the differentiation of dendritic cells and alternatively activated macrophages (AAM). Based on the evidence of IL-33 expression in bone, we hypothesized that IL-33 may shift the balance from osteoclast to AAM differentiation and protect from inflammatory bone loss. Using transgenic mice overexpressing human TNF, which develop spontaneous joint inflammation and cartilage destruction, we show that administration of IL-33 or an IL-33R (ST2L) agonistic Ab inhibited cartilage destruction, systemic bone loss, and osteoclast differentiation. Reconstitution of irradiated hTNFtg mice with ST2(-/-) bone marrow led to more bone loss compared with the chimeras with ST2(+)/(+) bone marrow, demonstrating an important endogenous role of the IL-33/ST2L pathway in bone turnover. The protective effect of IL-33 on bone was accompanied by a significant increase of antiosteoclastogenic cytokines (GM-CSF, IL-4, and IFN-gamma) in the serum. In vitro IL-33 directly inhibits mouse and human M-CSF/receptor activator for NF-kappa B ligand-driven osteoclast differentiation. IL-33 acts directly on murine osteoclast precursors, shifting their differentiation toward CD206(+) AAMs via GM-CSF in an autocrine fashion. Thus, we show in this study that IL-33 is an important bone-protecting cytokine and may be of therapeutic benefit in treating bone resorption. The Journal of Immunology, 2011, 186: 6097-610
    corecore