92 research outputs found

    Review of performance, medical, and operational data on pilot aging issues

    Get PDF
    An extensive review of the literature and studies relating to performance, medical, operational, and legal data regarding pilot aging issues was performed in order to determine what evidence there is, if any, to support mandatory pilot retirement. Popular misconceptions about aging, including the failure to distinguish between the normal aging process and disease processes that occur more frequently in older individuals, continue to contribute to much of the misunderstanding and controversy that surround this issue. Results: Review of medical data related to the pilot aging issue indicate that recent improvement in medical diagnostics and treatment technology have made it possible to identify to a high degree individuals who are at risk for developing sudden incapacitating illness and for treating those with disqualifying medical conditions. Performance studies revealed that after controlling for the presence of disease states, older pilots are able to perform as well as younger pilots on many performance tasks. Review of accident data showed that older, healthy pilots do not have higher accident rates than younger pilots, and indeeed, evidence suggests that older pilots have an advantage in the cockpit due to higher experience levels. The Man-Machine-Mission-Environment interface of factors can be managed through structured, supervised, and enhanced operations, maintenance, flight reviews, and safety procedures in order to ensure safe and productive operations by reducing the margin of error and by increasing the margin of safety. Conclusions: There is no evidence indicating any specific age as an arbitrary cut-off point for pilots to perform their fight duties. A combination of regular medical screening, performance evaluation, enhanced operational maintenance, and safety procedures can most effectively ensure a safe pilot population than can a mandatory retirement policy based on arbitrary age restrictions

    NASA/NSF Antarctic Science Working Group

    Get PDF
    A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events

    Food Mass Reduction Trade Study

    Get PDF
    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable, and nutritious while efficiently balancing appropriate vehicle resources such as mass, volume, power, water, and crewtime. Often, this presents a challenge since maintaining the quality of the food system can result in a higher mass and volume. The Orion vehicle is significantly smaller than the Shuttle vehicle and the International Space Station and the mass and volume available for food is limited. Therefore, the food team has been challenged to reduce the mass of the packaged food from 1.82 kg per person per day to 1.14 kg per person per day. Past work has concentrated on how to reduce the mass of the packaging which contributes to about 15% of the total mass of the packaged food system. Designers have also focused on integrating and optimizing the Orion galley equipment as a system to reduce mass. To date, there has not been a significant effort to determine how to reduce the food itself. The objective of this project is to determine how the mass and volume of the packaged food can be reduced while maintaining caloric and hydration requirements. The following tasks are the key elements to this project: (1) Conduct further analysis of the ISS Standard Menu to determine moisture, protein, carbohydrate, and fat levels. (2) Conduct trade studies to determine how to bring the mass of the food system down. Trade studies may include removing the water of the total food system and/or increasing the fat content. (3) Determine the preferred method for delivery of the new food (e.g. bars, or beverages) and the degree of replacement. (4) Determine whether there are commercially available products that meet the requirements. By the end of this study, an estimate of the mass and volume savings will be provided to the Constellation Program. In addition, if new technologies need to be developed to achieve the mass savings, the technologies, timeline, and budget will be identified at the end of the project

    Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    Get PDF
    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure

    Potentiation of the anti-tumour effects of Photofrin®-based photodynamic therapy by localized treatment with G-CSF

    Get PDF
    Photofrin®-based photodynamic therapy (PDT) has recently been approved for palliative and curative purposes in cancer patients. It has been demonstrated that neutrophils are indispensable for its anti-tumour effectiveness. We decided to evaluate the extent of the anti-tumour effectiveness of PDT combined with administration of granulocyte colony-stimulating factor (G-CSF) as well as the influence of Photofrin®and G-CSF on the myelopoiesis and functional activity of neutrophils in mice. An intensive treatment with G-CSF significantly potentiated anti-tumour effectiveness of Photofrin®-based PDT resulting in a reduction of tumour growth and prolongation of the survival time of mice bearing two different tumours: colon-26 and Lewis lung carcinoma. Moreover, 33% of C-26-bearing mice were completely cured of their tumours after combined therapy and developed a specific and long-lasting immunity. The tumours treated with both agents contained more infiltrating neutrophils and apoptotic cells then tumours treated with either G-CSF or PDT only. Importantly, simultaneous administration of Photofrin®and G-CSF stimulated bone marrow and spleen myelopoiesis that resulted in an increased number of neutrophils demonstrating functional characteristics of activation. Potentiated anti-tumour effects of Photofrin®-based PDT combined with G-CSF observed in two murine tumour models suggest that clinical trials using this tumour therapy protocol would be worth pursuing. © 2000 Cancer Research Campaig

    Monogenic variants in dystonia: an exome-wide sequencing study

    Get PDF
    Background Dystonia is a clinically and genetically heterogeneous condition that occurs in isolation (isolated dystonia), in combination with other movement disorders (combined dystonia), or in the context of multisymptomatic phenotypes (isolated or combined dystonia with other neurological involvement). However, our understanding of its aetiology is still incomplete. We aimed to elucidate the monogenic causes for the major clinical categories of dystonia. Methods For this exome-wide sequencing study, study participants were identified at 33 movement-disorder and neuropaediatric specialty centres in Austria, Czech Republic, France, Germany, Poland, Slovakia, and Switzerland. Each individual with dystonia was diagnosed in accordance with the dystonia consensus definition. Index cases were eligible for this study if they had no previous genetic diagnosis and no indication of an acquired cause of their illness. The second criterion was not applied to a subset of participants with a working clinical diagnosis of dystonic cerebral palsy. Genomic DNA was extracted from blood of participants and whole-exome sequenced. To find causative variants in known disorder-associated genes, all variants were filtered, and unreported variants were classified according to American College of Medical Genetics and Genomics guidelines. All considered variants were reviewed in expert round-table sessions to validate their clinical significance. Variants that survived filtering and interpretation procedures were defined as diagnostic variants. In the cases that went undiagnosed, candidate dystonia-causing genes were prioritised in a stepwise workflow. Findings We sequenced the exomes of 764 individuals with dystonia and 346 healthy parents who were recruited between June 1, 2015, and July 31, 2019. We identified causative or probable causative variants in 135 (19%) of 728 families, involving 78 distinct monogenic disorders. We observed a larger proportion of individuals with diagnostic variants in those with dystonia (either isolated or combined) with coexisting non-movement disorder-related neurological symptoms (100 [45%] of 222;excepting cases with evidence of perinatal brain injury) than in those with combined (19 [19%] of 98) or isolated (16 [4%] of 388) dystonia. Across all categories of dystonia, 104 (65%) of the 160 detected variants affected genes which are associated with neurodevelopmental disorders. We found diagnostic variants in 11 genes not previously linked to dystonia, and propose a predictive clinical score that could guide the implementation of exome sequencing in routine diagnostics. In cases without perinatal sentinel events, genomic alterations contributed substantively to the diagnosis of dystonic cerebral palsy. In 15 families, we delineated 12 candidate genes. These include IMPDH2, encoding a key purine biosynthetic enzyme, for which robust evidence existed for its involvement in a neurodevelopmental disorder with dystonia. We identified six variants in IMPDH2, collected from four independent cohorts, that were predicted to be deleterious de-novo variants and expected to result in deregulation of purine metabolism. Interpretation In this study, we have determined the role of monogenic variants across the range of dystonic disorders, providing guidance for the introduction of personalised care strategies and fostering follow-up pathophysiological explorations
    corecore