497 research outputs found
The Effect of Retro-Cueing on an ERP Marker of VSTM Maintenance
Previous research has found that Contralateral Delay Activity (CDA) is correlated with the number of items maintained in Visual Short Term Memory from one visual field (VF) (Vogel & Machizawa, 2004). CDA is usually elicited by a to-be-remembered array after a prospective cue (pro-cue) signalling the relevant side of the visual display, and is interpreted as a putative electrophysiological signature of WM maintenance. Attention can also be directed to the contents of VSTM, after the presentation of a visual array, using a retroactive cue (retro-cue) (Nobre, Griffin, & Rao, 2008). Because retro-cueing directs attention within a memory trace, potentially reducing the load of items to be maintained, we hypothesised that this would significantly attenuate the CDA. Participants were initially presented with a spatial pro-cue which reduced the number of to-be-remembered items to one side. After a delay, a memory array of either four (low load) or eight (high load) items was displayed. A retro-cue then cued participants to one location within the relevant VF, further reducing the load of to-be-remembered items; or provided no information, requiring participants to hold all items in the relevant VF. At the end of the trial, participants performed a same/different judgement on a test stimulus. Retro-cues significantly improved VSTM performance. Unexpectedly, the CDA was found to be abolished by the presentation of both spatially predictive and neutral cues, independently of the VSTM load participants had to maintain
Decoding Rich Spatial Information with High Temporal Resolution
New research suggests that magnetoencephalography (MEG) contains rich spatial information for decoding neural states. Even small differences in the angle of neighbouring dipoles generate subtle, but statistically separable field patterns. This implies MEG (and electroencephalography: EEG) is ideal for decoding neural states with high-temporal resolution in the human brain
Markers of preparatory attention predict visual short-term memory performance
AbstractVisual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d′). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability
Unimodal and Bimodal Access to Sensory Working Memories by Auditory and Visual Impulses
It is unclear to what extent sensory processing areas are involved in the maintenance of sensory information in working memory (WM). Previous studies have thus far relied on finding neural activity in the corresponding sensory cortices, neglecting potential activity-silent mechanisms, such as connectivity-dependent encoding. It has recently been found that visual stimulation during visual WM maintenance reveals WM-dependent changes through a bottom-up neural response. Here, we test whether this impulse response is uniquely visual and sensory-specific. Human participants (both sexes) completed visual and auditory WM tasks while electroencephalography was recorded. During the maintenance period, the WM network was perturbed serially with fixed and task-neutral auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented during the maintenance of a pure tone resulted in a WM-dependent neural response, providing evidence for the auditory counterpart to the visual WM findings reported previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent impulse response, implicating the visual cortex in the maintenance of auditory information, either directly or indirectly, as a pathway to the neural auditory WM representations elsewhere. In contrast, during visual WM maintenance, only the impulse response to visual stimulation was content-specific, suggesting that visual information is maintained in a sensory-specific neural network, separated from auditory processing areas
Revealing hidden states in visual working memory using electroencephalography
It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively "activity-silent" neural state. Silent vWM is consistent with recent cognitive and neural models, but poses an important experimental problem: how can we study these silent states using conventional measures of brain activity? We propose a novel approach that is analogous to echolocation: using a high-contrast visual stimulus, it may be possible to drive brain activity during vWM maintenance and measure the vWM-dependent impulse response. We recorded electroencephalography (EEG) while participants performed a vWM task in which a randomly oriented grating was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the maintenance period in half of the trials. The electrophysiological response from posterior channels was used to decode the orientations of the gratings. While orientations could be decoded during and shortly after stimulus presentation, decoding accuracy dropped back close to baseline in the delay. However, the visual evoked response from the task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result provides important proof-of-concept for a promising and relatively simple approach to decode "activity-silent" vWM content using non-invasive EEG
Multiple and dissociable effects of sensory history on working-memory performance
Behavioral reports of sensory information are biased by stimulus history. The nature and direction of such serial-dependence biases can differ between experimental settings; both attractive and repulsive biases toward previous stimuli have been observed. How and when these biases arise in the human brain remains largely unexplored. They could occur either via a change in sensory processing itself and/or during postperceptual processes such as maintenance or decision-making. To address this, we tested 20 participants (11 female) and analyzed behavioral and magnetoencephalographic (MEG) data from a working-memory task in which participants were sequentially presented with two randomly oriented gratings, one of which was cued for recall at the end of the trial. Behavioral responses showed evidence for two distinct biases: (1) a within-trial repulsive bias away from the previously encoded orientation on the same trial, and (2) a between-trial attractive bias toward the task-relevant orientation on the previous trial. Multivariate classification of stimulus orientation revealed that neural representations during stimulus encoding were biased away from the previous grating orientation, regardless of whether we considered the within-trial or between-trial prior orientation, despite opposite effects on behavior. These results suggest that repulsive biases occur at the level of sensory processing and can be overridden at postperceptual stages to result in attractive biases in behavior.
SIGNIFICANCE STATEMENT Recent experience biases behavioral reports of sensory information, possibly capitalizing on the temporal regularity in our environment. It is still unclear at what stage of stimulus processing such serial biases arise. Here, we recorded behavior and neurophysiological [magnetoencephalographic (MEG)] data to test whether neural activity patterns during early sensory processing show the same biases seen in participants' reports. In a working-memory task that produced multiple biases in behavior, responses were biased toward previous targets, but away from more recent stimuli. Neural activity patterns were uniformly biased away from all previously relevant items. Our results contradict proposals that all serial biases arise at an early sensory processing stage. Instead, neural activity exhibited mostly adaptation-like responses to recent stimuli
Income Protection (IP) Insurance
4 pp., 1 tableThe Income Protection program insures producers against lost income from reductions in yield or price. Examples guide the reader through the process of selecting coverage according to different pricing scenarios
Crop Revenue Coverage (CRC)
4 pp., 1 tableCrop Revenue Coverage guarantees a stated amount of revenue based on commodity futures prices. This publication explains how CRC works and gives examples based on harvest price scenarios
Group Risk Plan (GRP) Insurance
4 pp., 1 tableGroup Risk Plan Insurance helps producers manage risk by insuring them against widespread loss of production. The insurance is described in detail, and examples are given for various yields and prices
- …