2 research outputs found

    Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.

    No full text
    Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores

    Recombinant Salmonella vaccines for biodefence.

    No full text
    There is a requirement for vaccines to protect against pathogens that may be misused for bioterrorism or biowarfare purposes. In particular, biodefence vaccines are required that may be used for safe and easy immunisation of populations and that can rapidly induce mucosal immunity to provide protection at the lung surface against a range of airborne agents. To address this need, recombinant Salmonella vaccines are being developed. In this review, the technologies used, considerations needed, progress made, and future prospects for developing multivalent Salmonella-based vaccines for biodefence are discussed
    corecore