17 research outputs found

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid.

    Get PDF
    Surface-grafted polymers, such as poly(ethylene glycol) (PEG), provide an effective steric barrier against surface-surface and surface-macromolecule interactions. In the present work, we have studied the exchange of monooleoylphosphatidylcholine (MOPC) with vesicle membranes containing 750 mol wt surface-grafted PEG (incorporated as PEG-lipid) from 0 to 20 mol % and have analyzed the experimental results in terms of thermodynamic and stationary equilibrium models. Micropipette manipulation was used to expose a single lipid vesicle to a flow of MOPC solution (0.025 microM to 500 microM). MOPC uptake was measured by a direct measure of the vesicle area change. The presence of PEG(750) lipid in the vesicle membrane inhibited the partitioning of MOPC micelles (and to some extent microaggregates) into the membrane, while even up to 20 mol % PEG-lipid, it did not affect the exchange of MOPC monomers both into and out of the membrane. The experimental data and theoretical models show that grafted PEG acts as a very effective molecular scale "filter" and prevents micelle-membrane contact, substantially decreasing the apparent rate and amount of MOPC taken up by the membrane, thereby stabilizing the membrane in a solution of MOPC that would otherwise dissolve it

    High-efficiency loading, transfection, and fusion of cells by electroporation in two-phase polymer systems.

    Get PDF
    A method to concentrate drugs, DNA, or other materials with target cells in two-phase polymer systems for high-efficiency electroloading is described. The two-phase polymer system is utilized for cell and loading material selection, as well as for cell aggregation before electrofusion. The phase mixing of several water-soluble polymers is characterized, and the polyethylene glycol-Dextran (PEG m.w. 8,000 + Dextran m.w. 71,000) mixture is selected to illustrate the advantage of the two-phase systems. Fluorescently labeled Dextran or DNA is loaded into Chinese hamster ovary (CHO) and JTL cells, using electroporation in either the two-phase polymer system or the conventional single-phase suspension. The loading efficiency is 4 to 30 times higher for the two-phase system, with the best advantage at lower applied field range. Transfections of CHO, COS, Melan C, and JTL lymphoid cells using pSV-beta-galactosidase (for CHO and COS), pBK-RSV-tyrosinase, and pCP4-fucosidase plasmids, respectively, by electroporation in the two-phase polymer system and the conventional single-phase electroporation method, are compared. The former method is far superior to the latter in terms of efficiency. The threshold and optimal field strengths for the former are significantly lower than those for the latter method, so the former method is more favorable in terms of equipment requirement and safety. Electrofusion efficiency in the two-phase system is comparable to that in polyethylene glycol suspension alone and is a significant improvement from the conventional electrofusion method with dielectrophoresis. The two-phase polymer method is, therefore, a valuable technique for gene delivery to a limited cell source, as in ex vivo gene therapy

    Interaction of synthetic HA2 influenza fusion peptide analog with model membranes.

    Get PDF
    The interaction of the synthetic 21 amino acid peptide (AcE4K) with 1-oleoyl-2-[caproyl-7-NBD]-sn-glycero-3-phosphocholine membranes is used as a model system for the pH-sensitive binding of fusion peptides to membranes. The sequence of AcE4K (Ac-GLFEAIAGFIENGWEGMIDGK) is based on the sequence of the hemagglutinin HA2 fusion peptide and has similar partitioning into phosphatidylcholine membranes as the viral peptide. pH-dependent partitioning in the membrane, circular dichroism, tryptophan fluorescence, change of membrane area, and membrane strength, are measured to characterize various key aspects of the peptide-membrane interaction. The experimental results show that the partitioning of AcE4K in the membrane is pH dependent. The bound peptide inserts in the membrane, which increases the overall membrane area in a pH-dependent manner, however the depth of insertion of the peptide in the membrane is independent of pH. This result suggests that the binding of the peptide to the membrane is driven by the protonation of its three glutamatic acids and the aspartic acid, which results in an increase of the number of bound molecules as the pH decreases from pH 7 to 4.5. The transition between the bound state and the free state is characterized by the Gibbs energy for peptide binding. This Gibbs energy for pH 5 is equal to -30.2 kJ/mol (-7.2 kcal/mol). Most of the change of the Gibbs energy during the binding of AcE4K is due to the enthalpy of binding -27.3 kJ/mol (-6.5 kcal/mol), while the entropy change is relatively small and is on the order of 6.4 J/mol.K (2.3 cal/mol.K). The energy barrier separating the bound and the free state, is characterized by the Gibbs energy of the transition state for peptide adsorption. This Gibbs energy is equal to 51.3 kJ/mol (12.3 kcal/mol). The insertion of the peptide into the membrane is coupled with work for creation of a vacancy for the peptide in the membrane. This work is calculated from the measured area occupied by a single peptide molecule (220 A(2)) and the membrane elasticity (190 mN/m), and is equal to 15.5 kJ/mol (3.7 kcal/mol). The comparison of the work for creating a vacancy and the Gibbs energy of the transition state shows that the work for creating a vacancy may have significant effect on the rate of peptide insertion and therefore plays an important role in peptide binding. Because the work for creating a vacancy depends on membrane elasticity and the elasticity of the membrane is dependent on membrane composition, this provides a tool for modulating the pH for membrane instability by changing membrane composition. The insertion of the peptide in the membrane does not affect the membrane permeability for water, which shows that the peptide does not perturb substantially the packing of the hydrocarbon region. However, the ability of the membrane to retain solutes in the presence of peptide is compromised, suggesting that the inserted peptide promotes formation of short living pores. The integrity of the membrane is substantially compromised below pH 4.8 (threshold pH), when large pores are formed and the membrane breaks down. The binding of the peptide in the pore region is reversible, and the pore size varies on the experimental conditions, which suggests that the peptide in the pore region does not form oligomers

    Dendritic Cell-Ewing’s Sarcoma Cell Hybrids Enhance Antitumor Immunity

    No full text
    Given the effective immunotherapy of DC-based vaccine in other cancers, we hypothesized DC-based vaccines would induce effective immune responses against Ewing’s sarcoma. To verify this hypothesis and develop the most effective dendritic cell vaccine against Ewing’s sarcoma, we evaluated the antitumor efficacy of dendritic cell-Ewing’s sarcoma hybrids and dendritic cells pulsed with other antigen-loading methods, including cell lysates and the characteristic EWS-FLI1 gene of Ewing’s sarcoma, using an A673 cell line as a model. The hybrids were generated by electrofusion with fusion efficiency and viability determined by flow cytometry and fluorescent microscopy analyses. By interferon-γ secretion assay, the capacity of hybrids to stimulate cytotoxic T-lymphocytes (CTLs) is higher than that of other antigen-loading methods showing stronger tumor antigen-specific CTL cytotoxicity to A673. By in vivo experiment in SCID mice, all dendritic cell-based strategies induced specific immune responses to Ewing’s sarcoma after mice-human immune system reconstitution by inoculating human peripheral blood mononuclear cells into the peritoneal cavity of SCID mice. However, the hybrids most inhibited the subcutaneous tumor growth in SCID mice compared with dendritic cells pulsed with other loading methods. The data suggest A673 cells respond to dendritic cell-based immunotherapy
    corecore