445 research outputs found
Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii.
There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage-infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study the endolysins Cpl-1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight. This article is protected by copyright. All rights reserved
Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg
Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg^+/Dy^+, the electron density, the ground state, and the totaldensity of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate
Recommended from our members
The PNL high-transmission three-stage mass spectrometer
We have constructed a three-stage isotope-ratio mass spectrometer of unique ion-optical design that achieves high ion transmission efficiency and high abundance sensitivity. The spectrometer has tandem 90[degrees] -deflection magnets with boundaries 18[degrees] off normal. The magnet drift lengths are 1.48 times the 27-cm radius of deflection. This extended geometry gives mass dispersion equivalent to a 40-cm-radius magnet with normal boundaries. The first magnet renders the ion beam parallel in the vertical plane and provides a focus in the horizontal plane of mass dispersion. The second magnet brings the beam to a stigmatic focus. This novel ion-optical design gives 100% transmission without the need for intermediate focusing lenses. It also provides a 16% increase in mass resolution over the traditional tandem geometry with normal magnet boundaries. Complete transmission of ions is maintained through a third-stage cylindrical electric sector of 38-cm radius, which provides increased isotope-abundance sensitivity. The isotope-abundance sensitivity of the new mass spectrometer is an order of magnitude better than similar instruments with normal magnet boundaries. This is because the vertical focusing of the ion beam prevents ion scattering from the top and bottom of the flight tube. The measured values of the isotope-abundance sensitivity one-half mass unit away from the rhenium ion peaks at masses 185 and 187 are M [minus] 1/2 = (6.5 [plus minus] 0.5)[times] 0[sup [minus]10] M + 1/2 = (3.1 [plus minus] 0.8) [times] 10[sup [minus]10]. By extrapolation, the uranium isotope-abundance sensitivity is m [minus] 1 = 1 [times] 10[sup [minus]10]. Construction of the instrument was facilitated by using standard commercial mass spectrometer components
Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas
Management of nanosize powder particles via control of plasma parameters in a low-pressure SiH4
discharge for silicon microfabrication technologies is considered. The spatial profiles of electron and
positive/negative ion number densities, electron temperature, and charge of the fine particles are
obtained using a self-consistent fluid model of the electronegative plasmas in the parallel plate
reactor geometry. The model accounts for variable powder size and number density, powder-charge
distribution, local plasma nonuniformity, as well as UV photodetachment of electrons from the
nanoparticles. The relations between the equilibrium discharge state and powder properties and the
input power and neutral gas pressure are studied. Methods for controlling the electron temperature
and SiH3- anion (here assumed to be the powder precursor) density, and hence the powder growth
process, are proposed. It is shown that by controlling the neutral gas pressure, input power, and
powder size and density, plasma density profiles with high levels of uniformity can be achieved.
Management of powder charge distribution is also possible through control of the external
parameters
- …