7 research outputs found

    Developing a Data-Driven Classification of South Florida Plant Communities

    Get PDF
    A comprehensive, broadly accepted vegetation classification is important for ecosystem management, particularly for planning and monitoring. South Florida vegetation classification systems that are currently in use were largely arrived at subjectively and intuitively with the involvement of experienced botanical observers and ecologists, but with little support in terms of quantitative field data. The need to develop a field data-driven classification of South Florida vegetation that builds on the ecological organization has been recognized by the National Park Service and vegetation practitioners in the region. The present work, funded by the National Park Service Inventory and Monitoring Program - South Florida/Caribbean Network (SFCN), covers the first stage of a larger project whose goal is to apply extant vegetation data to test, and revise as necessary, an existing, widely used classification (Rutchey et al. 2006). The objectives of the first phase of the project were (1) to identify useful existing datasets, (2) to collect these data and compile them into a geodatabase, (3) to conduct an initial classification analysis of marsh sites, and (4) to design a strategy for augmenting existing information from poorly represented landscapes in order to develop a more comprehensive south Florida classification

    Woody Plant Invasion into the Freshwater Marl Prairie Habitat of the Cape Sable Seaside Sparrow: Final Report

    Get PDF
    In the fall of 2005, U.S. Fish and Wildlife Services (USFWS) contracted with Florida International University (FIU) to study the physical and biological drivers underlying the distribution of woody plant species in the marl prairie habitat of the Cape Sable Seaside Sparrow (CSSS). This report presents what we have learned about woody plant encroachment based on studies carried out during the period 2006-2008. The freshwater marl prairie habitat currently occupied by the Cape Sable seaside sparrow (CSSS; Ammodramus maritimus mirabilis) is a dynamic mosaic comprised of species-rich grassland communities and tree islands of various sizes, densities and compositions. Landscape heterogeneity and the scale of vegetative components across the marl prairie is primarily determined by hydrologic conditions, biological factors (e.g. dispersal and growth morphology), and disturbances such as fire. The woody component of the marl prairie landscape is subject to expansion through multiple positive feedback mechanisms, which may be initiated by recent land use change (e.g. drainage). Because sparrows are known to avoid areas where the woody component is too extensive, a better understanding of invasion dynamics is needed to ensure proper management

    Marl Prairie/Slough Gradients; Patterns and Trends in Shark Slough and Adjacent Marl Prairies (CERP monitoring activity 3.1.3.5), First Annual Report (2005)

    Get PDF
    The work on CERP monitoring item 3.1.3.5 (Marl prairie/slough gradients) is being conducted by Florida International University (Dr Michael Ross, Project Leader), with Everglades National Park (Dr. Craig Smith) providing administrative support and technical consultation. As of January 2006 the funds transferred by ACOE to ENP, and subsequently to FIU, have been entirely expended or encumbered in salaries or wages. The project work for 2005 started rather late in the fiscal year, but ultimately accomplished the Year 1 goals of securing a permit to conduct the research in Everglades National Park, finalizing a detailed scope of work, and sampling marsh sites which are most easily accessed during the wet season. 46 plots were sampled in detail, and a preliminary vegetation classification distinguished three groups among these sites (Sawgrass marsh, sawgrass and other, and slough) which may be arranged roughly along a hydrologic gradient from least to most persistently inundated . We also made coarser observations of vegetation type at 5-m intervals along 2 transects totaling ~ 5 km. When these data were compared with similar observations made in 1998-99, it appeared that vegetation in the western portion of Northeast Shark Slough (immediately east of the L-67 extension) had shifted toward a more hydric type during the last 6 years, while vegetation further east was unchanged in this respect. Because this classification and trend analysis is based on a small fraction of the data set that will be available after the first cycle of sampling (3 years from now), the results should not be interpreted too expansively. However, they do demonstrate the potential for gaining a more comprehensive view of marsh vegetation structure and dynamics in the Everglades, and will provide a sound basis for adaptive management

    Cape Sable Seaside Sparrow Habitat – Vegetation Monitoring: FY 2009 - Final Report

    Get PDF
    This document summarizes the activities that were accomplished in FY 2009 on the research project “Cape Sable seaside sparrow habitat – Vegetation Monitoring”, a collaborative effort among the US Army Corps of Engineers, Florida International University, and the US Geological Survey. The major activities in 2009 included field work, data analysis and presentations. The results of 2009 field work were presented at the 4th International Congress of Fire Ecology and Management, Savannah, GA from November 30 to Dec 5, 2009 and at the Cape Sable seaside sparrow (CSSS) Fire Meeting, held at the Krome Center, Homestead, FL on December 8, 2009. Field sampling was conducted between March 23 and June 3, 2009, during which we resurveyed 234 sites: 191 Census sites, 3 sites on Transect B, 7 sites on Transect D, and 33 sites on Transect F. The number of sites sampled in 2009 was higher than in any previous year, primarily because a large number of sites burned in Mustang Corner fire and three other wild fires in 2008 were included in 2009 sampling. At all sites surveyed in 2009, we recorded structural and compositional vegetation parameters following the methods used in previous years (2003-2008) and tagged shrubs and trees (woody plants \u3e 1 m) present in the 5 x 60 m plots. In addition, for the first time, we measured height of sawgrass (Cladium jamaicense) stubble in the compositional plots at the sites that were burned in 2008. Field data were entered by field crews, and were thoroughly checked by Jay Sah (Co-PI) to ensure that the data were complete, correct, and compliant with sampling methodologies. The data are stored under a project folder on a shared network drive maintained by the Southeast Environmental Research Center (SERC) at FIU. The shared network drive is backed up daily

    Effect of Hydrologic Restoration on the Habitat of the Cape Sable Seaside Sparrow, 2008 – Final Report

    Get PDF
    This document summarizes the activities that were accomplished in 2008, the sixth year of the research project “Effect of hydrologic restoration on the habitat of the Cape Sable seaside sparrow”, a collaborative effort among the US Army Corps of Engineers, Everglades National Park, Florida International University, and the US Geological Survey (Florida Integrated Science Center). The major activities in 2008 included field work, data analysis, and presentations. Jay Sah presented the results of 6th year field work at the Cape Sable seaside sparrow (CSSS) Fire Meeting 2008, held on December 2-3 at the Krome Center, Homestead, Florida. In the same meeting, Mike Ross presented results from a related USFWS-funded project on encroachment pattern of woody plants in Cape Sable seaside sparrow habitat
    corecore