63 research outputs found
A Holistic Approach for Bitcoin Confirmation Times & Optimal Fee Selection
Bitcoin is currently subject to a significant pay-for-speed trade-off. This
is caused by lengthy and highly variable transaction confirmation times,
especially during times of congestion. Users can reduce their transaction
confirmation times by increasing their transaction fee. In this paper, based on
the inner workings of Bitcoin, we propose a model-based approach (based on the
Cram\'er-Lundberg model) that can be used to determine the optimal fee, via,
for example, the mean or quantiles, and models accurately the confirmation time
distribution for a given fee. The proposed model is highly suitable as it
arises as the limiting model for the mempool process (that tracks the
unconfirmed transactions), which we rigorously show via a fluid limit and we
extend this to the diffusion limit (an approximation of the Cram\'er-Lundberg
model for fast computations in highly congested instances). We also propose
methods (incorporating the real-time data) to estimate the model parameters,
thereby combining model and data-driven approaches. The model-based approach is
validated on real-world data and the resulting transaction fees outperform, in
most instances, the data-driven ones.Comment: 33 pages, 13 figure
Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome
The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome
Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families
<p>Abstract</p> <p>Background</p> <p>Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the <it>SLX4 </it>gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of <it>SLX4 </it>in German or Byelorussian familial cases of breast cancer without detected mutations in <it>BRCA1 </it>or <it>BRCA2 </it>has been completed, with globally negative results.</p> <p>Methods</p> <p>The genomic region of <it>SLX4</it>, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of <it>BRCA1 </it>or <it>BRCA2 </it>mutations.</p> <p>Results</p> <p>This mutational analysis revealed extensive genetic variation of <it>SLX4</it>, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them.</p> <p>Conclusions</p> <p>Overall, while the results of this study do not identify clearly pathogenic mutations of <it>SLX4 </it>contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.</p
Заболевание тазобедренного сустава у детей с наследственной предрасположенностью: концептуальная модель
На основе принципов интегративной медицины, системного подхода с использованием концептуально−логического моделирования разработана единая система представлений о заболеваниях тазобедренного сустава у детей с наследственной предрасположенностью. Показано, что предлагаемый интегративный подход может служить основой для разработки диагностических и прогностических критериев развития суставов и проведения патогенетического хирургического лечения, направленного на ликвидацию или существенное снижение частоты формирования диспластического коксартроза.Based on the principles of integrative medicine, systemic approach with the use of concept of logical modelling, a uniform system of concepts about the diseases of the hip joint in children with hereditary susceptibility was worked out. It was shown that the suggested integrative approach can be used for working out diagnostic and prognostic criteria of joint development and performing pathogenetic surgery aimed at elimination or reduction in the frequency of forming dysplastic coxarthrosis
Rescue of replication failure by Fanconi anaemia proteins
Chromosomal aberrations are often associated with incomplete genome duplication, for instance at common fragile sites, or as a consequence of chemical alterations in the DNA template that block replication forks. Studies of the cancer-prone disease Fanconi anaemia (FA) have provided important insights into the resolution of replication problems. The repair of interstrand DNA crosslinks induced by chemotherapy drugs is coupled with DNA replication and controlled by FA proteins. We discuss here the recent discovery of new FA-associated proteins and the development of new tractable repair systems that have dramatically improved our understanding of crosslink repair. We focus also on how FA proteins protect against replication failure in the context of fragile sites and on the identification of reactive metabolites that account for the development of Fanconi anaemia symptoms
Mammalian BTBD12 (SLX4) Protects against Genomic Instability during Mammalian Spermatogenesis
The mammalian ortholog of yeast Slx4, BTBD12, is an ATM substrate that functions as a scaffold for various DNA repair activities. Mutations of human BTBD12 have been reported in a new sub-type of Fanconi anemia patients. Recent studies have implicated the fly and worm orthologs, MUS312 and HIM-18, in the regulation of meiotic crossovers arising from double-strand break (DSB) initiating events and also in genome stability prior to meiosis. Using a Btbd12 mutant mouse, we analyzed the role of BTBD12 in mammalian gametogenesis. BTBD12 localizes to pre-meiotic spermatogonia and to meiotic spermatocytes in wildtype males. Btbd12 mutant mice have less than 15% normal spermatozoa and are subfertile. Loss of BTBD12 during embryogenesis results in impaired primordial germ cell proliferation and increased apoptosis, which reduces the spermatogonial pool in the early postnatal testis. During prophase I, DSBs initiate normally in Btbd12 mutant animals. However, DSB repair is delayed or impeded, resulting in persistent γH2AX and RAD51, and the choice of repair pathway may be altered, resulting in elevated MLH1/MLH3 focus numbers at pachynema. The result is an increase in apoptosis through prophase I and beyond. Unlike yeast Slx4, therefore, BTBD12 appears to function in meiotic prophase I, possibly during the recombination events that lead to the production of crossovers. In line with its expected regulation by ATM kinase, BTBD12 protein is reduced in the testis of Atm−/− males, and Btbd12 mutant mice exhibit increased genomic instability in the form of elevated blood cell micronucleus formation similar to that seen in Atm−/− males. Taken together, these data indicate that BTBD12 functions throughout gametogenesis to maintain genome stability, possibly by co-ordinating repair processes and/or by linking DNA repair events to the cell cycle via ATM
- …