3 research outputs found
Bellman equations for optimal feedback control of qubit states
Using results from quantum filtering theory and methods from classical
control theory, we derive an optimal control strategy for an open two-level
system (a qubit in interaction with the electromagnetic field) controlled by a
laser. The aim is to optimally choose the laser's amplitude and phase in order
to drive the system into a desired state. The Bellman equations are obtained
for the case of diffusive and counting measurements for vacuum field states. A
full exact solution of the optimal control problem is given for a system with
simpler, linear, dynamics. These linear dynamics can be obtained physically by
considering a two-level atom in a strongly driven, heavily damped, optical
cavity.Comment: 10 pages, no figures, replaced the simpler model in section
A Quantum Langevin Formulation of Risk-Sensitive Optimal Control
In this paper we formulate a risk-sensitive optimal control problem for
continuously monitored open quantum systems modelled by quantum Langevin
equations. The optimal controller is expressed in terms of a modified
conditional state, which we call a risk-sensitive state, that represents
measurement knowledge tempered by the control purpose. One of the two
components of the optimal controller is dynamic, a filter that computes the
risk-sensitive state.
The second component is an optimal control feedback function that is found by
solving the dynamic programming equation. The optimal controller can be
implemented using classical electronics.
The ideas are illustrated using an example of feedback control of a two-level
atom