3 research outputs found

    Bellman equations for optimal feedback control of qubit states

    Get PDF
    Using results from quantum filtering theory and methods from classical control theory, we derive an optimal control strategy for an open two-level system (a qubit in interaction with the electromagnetic field) controlled by a laser. The aim is to optimally choose the laser's amplitude and phase in order to drive the system into a desired state. The Bellman equations are obtained for the case of diffusive and counting measurements for vacuum field states. A full exact solution of the optimal control problem is given for a system with simpler, linear, dynamics. These linear dynamics can be obtained physically by considering a two-level atom in a strongly driven, heavily damped, optical cavity.Comment: 10 pages, no figures, replaced the simpler model in section

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom
    corecore