44 research outputs found
Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records
Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters
Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden
The chemical composition of atmospheric particulate matter at Mt. Åreskutan, a mountaintop site in central Sweden, was analysed with a focus on its carbonaceous content. Filter samples taken during the Cloud and Aerosol Experiment at Åre (CAEsAR 2014) were analysed by means of a thermo-optical method and ion chromatography. Additionally, the particle light absorption and particle number size distribution measurements for the entire campaign were added to the analysis. Mean airborne concentrations of organic and elemental carbon during CAEsAR 2014 were OC = 0.85 0.80 g m and EC = 0.06 0.06 g m, respectively. Elemental to organic carbon ratios varied between EC/OC = 0.02 and 0.19. During the study a large wildfire occurred in Västmanland, Sweden, with the plume reaching our study site. This led to significant increases in OC and EC concentrations (OC = 3.04 0.03 g m and EC = 0.24 0.00 g m). The mean mass-specific absorption coefficient observed during the campaign was = 9.17.3 mg (at wavelength = 637 nm). In comparison to similarly remote European sites, Mt. Åreskutan experienced significantly lower carbonaceous aerosol loadings with a clear dominance of organic carbon. A mass closure study revealed a missing chemical mass fraction that likely originated from mineral dust. Potential regional source contributions of the carbonaceous aerosol were investigated using modelled air mass back trajectories. This source apportionment pointed to a correlation between high EC concentrations and air originating from continental Europe. Particles rich in organic carbon most often arrived from highly vegetated continental areas. However, marine regions were also a source of these aerosol particles. The source contributions derived during this study were compared to emission inventories of an Earth system model. This comparison highlighted a lack of OC and EC point-sources in the model’s emission inventory which could potentially lead to an underestimation of the carbonaceous aerosol reaching Mt. Åreskutan in the simulation of this Earth system model.© 2017 Informa UK Limite
Health impacts of active commuters’ exposure to traffic-related air pollution in Stockholm, Sweden
Robust metric for quantifying the importance of stochastic effects on nanoparticle growth
Comprehensive representation of nanoparticle dynamics is necessary for understanding nucleation and growth phenomena. This is critical in atmospheric physics, as airborne particles formed from vapors have significant but highly uncertain effects on climate. While the vapor–particle mass exchange driving particle growth can be described by a macroscopic, continuous substance for large enough particles, the growth dynamics of the smallest nanoparticles involve stochastic fluctuations in particle size due to discrete molecular collision and decay processes. To date, there have been no generalizable methods for quantifying the particle size regime where the discrete effects become negligible and condensation models can be applied. By discrete simulations of sub-10 nm particle populations, we demonstrate the importance of stochastic effects in the nanometer size range. We derive a novel, theory-based, simple and robust metric for identifying the exact sizes where these effects cannot be omitted for arbitrary molecular systems. The presented metric, based on examining the second- and first-order derivatives of the particle size distribution function, is directly applicable to experimental size distribution data. This tool enables quantifying the onset of condensational growth without prior information on the properties of the vapors and particles, thus allowing robust experimental resolving of nanoparticle formation physics.© The Author(s) 201
Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD
New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid–base pairs in particles as small as 10 nm
Recommended from our members
The ethics of carbon offsetting
Carbon offsetting can be loosely characterized as a mechanism by which an organization or individual contributes to a scheme that is projected either to remove carbon dioxide from the atmosphere or to deliver carbon dioxide emission reductions on the part of other organizations or individuals. An activity that has been offset therefore purports to make no long-term net contribution to atmospheric greenhouse gas concentrations. The ethical basis for using carbon offsetting as an approach to tackling climate change is very much contested. We seek to expose some of the underlying reasons for these ethical disagreements. We show that they relate both to empirical disagreements about what the likely benefits of offsetting are and, more fundamentally, to principled disagreements about the right way to discharge duties to deliver carbon reductions