1 research outputs found

    Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice

    No full text
    Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. We tested a novel subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant, delivered to mice parenterally or mucosally. Both routes of vaccination induced substantial neutralising antibody (nAb) titres, however, mucosal vaccination uniquely generated anti-Spike IgA, increased nAb in the serum and airways, and increased lung CD4+ T-cell responses. TLR2 is expressed by respiratory epithelia and immune cells. Using TLR2 deficient chimeric mice, we determined that TLR2 expression in either compartment facilitated early innate responses to mucosal vaccination. By contrast, TLR2 on hematopoietic cells was essential for optimal lung-localised, antigen-specific responses. In a K18-hACE2 mice, vaccination provided complete protection against disease and sterilising lung immunity against SARS-CoV-2. These data support mucosal vaccination as a strategy to improve protection in the respiratory tract against SARS-CoV-2 and other respiratory viruses
    corecore