20 research outputs found

    Exact propagation of open quantum systems in a system-reservoir context

    Full text link
    A stochastic representation of the dynamics of open quantum systems, suitable for non-perturbative system-reservoir interaction, non-Markovian effects and arbitrarily driven systems is presented. It includes the case of driving on timescales comparable to or shorter than the reservoir correlation time, a notoriously difficult but relevant case in the context of quantum information processing and quantum thermodynamics. A previous stochastic approach is re-formulated for the case of finite reservoir correlation and response times, resulting in a numerical simulation strategy exceeding previous ones by orders of magnitude in efficiency. Although the approach is based on a memory formalism, the dynamical equations propagated in the simulations are time-local. This leaves a wide range of choices in selecting the system to be studied and the numerical method used for propagation. For a series of tests, the dynamics of the spin-boson system is computed in various settings including strong external driving and Landau-Zener transitions.Comment: 7 pages, 4 figures. v2: inset in Fig. 2 and some text added, further references. v3: minor correction

    A Variance Reduction Technique for the Stochastic Liouville-von Neuman Equation

    Full text link
    The Stochastic Liouville-von Neumann equation provides an exact numerical simulation strategy for quantum systems interacting with Gaussian reservoirs [J.T. Stockburger & H. Grabert, PRL 88, 170407 (2002)]. Its scaling with the extension of the time interval covered has recently improved dramatically through time-domain projection techniques [J.T. Stockburger, EPL 115, 40010 (2016)]. Here we present a sampling strategy which results in a significantly improved scaling with the strength of the dissipative interaction, based on reducing the non-unitary terms in sample propagation through convex optimization techniques.Comment: 9 pages, 2 figures, 2 table

    Simulating spin-boson dynamics with stochastic Liouville-von Neumann equations

    Full text link
    Based on recently derived exact stochastic Liouville-von Neumann equations, several strategies for the efficient simulation of open quantum systems are developed and tested on the spin-boson model. The accuracy and efficiency of these simulations is verified for several test cases including both coherent and incoherent dynamics, involving timescales differing by several orders of magnitude. Using simulations with a time-dependent field, the time evolution of coherences in the reduced density matrix is investigated. Even in the case of weak damping, pronounced preparation effects are found. These indicate hidden coherence in the interacting system which can only be indirectly observed in the basis of the reduced quantum dynamics.Comment: 25 pages, 7 figures; to be published in Chemical Physic

    A Dynamical Theory of Electron Transfer: Crossover from Weak to Strong Electronic Coupling

    Full text link
    We present a real-time path integral theory for the rate of electron transfer reactions. Using graph theoretic techniques, the dynamics is expressed in a formally exact way as a set of integral equations. With a simple approximation for the self-energy, the rate can then be computed analytically to all orders in the electronic coupling matrix element. We present results for the crossover region between weak (nonadiabatic) and strong (adiabatic) electronic coupling and show that this theory provides a rigorous justification for the salient features of the rate expected within conventional electron transfer theory. Nonetheless, we find distinct characteristics of quantum behavior even in the strongly adiabatic limit where classical rate theory is conventionally thought to be applicable. To our knowledge, this theory is the first systematic dynamical treatment of the full crossover region.Comment: 11 pages, LaTeX, 8 Postscript figures to be published in J. Chem. Phy

    Exact c-number Representation of Non-Markovian Quantum Dissipation

    Full text link
    The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr{\"o}dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born--Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Let
    corecore