73 research outputs found

    X-ray Localization of the Globular Cluster G1 with XMM-Newton

    Get PDF
    We present an accurate X-ray position of the massive globular cluster G1 by using XMM-Newton and the Hubble Space Telescope (HST). The X-ray emission of G1 has been detected recently with XMM-Newton. There are two possibilities for the origin of the X-ray emission. It can be either due to accretion of the central intermediate-mass black hole, or by ordinary low-mass X-ray binaries. The precise location of the X-ray emission might distinguish between these two scenarios. By refining the astrometry of the XMM-Newton and HST data, we reduced the XMM-Newton error circle to 1.5". Despite the smaller error circle, the precision is not sufficient to distinguish an intermediate-mass black hole and luminous low-mass X-ray binaries. This result, however, suggests that future Chandra observations may reveal the origin of the X-ray emission.Comment: 4 pages, 2 figures; accepted for publication in Ap

    Optical studies of the ultraluminous X-ray source NGC1313 X-2

    Full text link
    NGC1313 X-2 was among the first ultraluminous X-ray sources discovered, and has been a frequent target of X-ray and optical observations. Using the HST/ACS multi-band observations, this source is identified with a unique counterpart within an error circle of 0\farcs2. The counterpart is a blue star on the edge of a young cluster of ≀107\le10^7 years amid a dominant old stellar population. Its spectral energy distribution is consistent with that for a Z=0.004 star with 8.5 M⊙M_\odot about 5×1065\times10^6 years old, or for an O7 V star at solar metallicity. The counterpart exhibited significant variability of Δm=0.153±0.033\Delta m = 0.153\pm0.033 mag between two F555W observations separated by three months, reminiscent of the ellipsoidal variability due to the orbital motion of this ULX binary.Comment: 21 pages, 7 figures, scheduled for the ApJ June 10, 2007, v662n 1 issu

    X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources

    Full text link
    The nature of ultraluminous X-ray sources in nearby galaxies is one of the major open questions in modern X-ray astrophysics. One possible explanation for these objects is an inhomogeneous, radiation dominated accretion disk around a ∌10M⊙\sim 10 M_{\odot} black hole -- the so-called ``photon bubble'' model. While previous studies of this model have focused primarily on its radiation-hydrodynamics aspects, in this paper, we provide an analysis of its X-ray spectral (continuum and possible edge and line) characteristics. Compton reflection between high and low density regions in the disk may provide the key to distinguishing this model from others, such as accretion onto an intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation transport code with the XSTAR code for reflection to simulate the photon spectra produced in a photon bubble model for ULXs. We find that reflection components tend to be very weak and in most cases not observable, and make predictions for the shape of the high-energy Comptonizing spectra. In many cases the Comptonization dominates the spectra even down to ∌\sim a few keV. In one simulation, a \sim 9 \kev feature was found, which may be considered a signature of photon bubbles in ULXs; furthermore, we make predictions of high energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa

    New insights into ultraluminous X-ray sources from deep XMM-Newton observations

    Full text link
    The controversy over whether ultraluminous X-ray sources (ULXs) contain a new intermediate-mass class of black holes (IMBHs) remains unresolved. We present new analyses of the deepest XMM-Newton observations of ULXs that address their underlying nature. We examine both empirical and physical modelling of the X-ray spectra of a sample of thirteen of the highest quality ULX datasets, and find that there are anomalies in modelling ULXs as accreting IMBHs with properties simply scaled-up from Galactic black holes. Most notably, spectral curvature above 2 keV in several sources implies the presence of an optically-thick, cool corona. We also present a new analysis of a 100 ks observation of Holmberg II X-1, in which a rigorous analysis of the temporal data limits the mass of its black hole to no more than 100 solar masses. We argue that a combination of these results points towards many (though not necessarily all) ULXs containing black holes that are at most a few 10s of solar mass in size.Comment: 5 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    The dependence of the estimated luminosities of ULX on spectral models

    Full text link
    Data from {\it Chandra} observations of thirty nearby galaxies were analyzed and 365 X-ray point sources were chosen whose spectra were not contaminated by excessive diffuse emission and not affected by photon pile up. The spectra of these sources were fitted using two spectral models (an absorbed power-law and a disk blackbody) to ascertain the dependence of estimated parameters on the spectral model used. It was found that the cumulative luminosity function depends on the choice of the spectral model, especially for luminosities >1040> 10^{40} ergs/s. In accordance with previous results, a large number (∌80\sim 80) of the sources have luminosities >1039> 10^{39} ergs/s (Ultra-Luminous X-ray sources) with indistinguishable average spectral parameters (inner disk temperature ∌1\sim 1 keV and/or photon index Γ∌2\Gamma \sim 2) with those of the lower luminosities ones. After considering foreground stars and known background AGN,we identify four sources whose minimum luminosity exceed 104010^{40} ergs/s, and call them Extremely Luminous X-ray sources (ELX). The spectra of these sources are in general better represented by the disk black body model than the power-law one. These ELX can be grouped into two distinct spectral classes. Two of them have an inner disk temperature of <0.5< 0.5 keV and hence are called ``supersoft'' ELX, while the other two have temperatures ≳1.3\gtrsim 1.3 keV and are called ``hard'' ELX. The estimated inner disk temperatures of the supersoft ELX are compatible with the hypothesis that they harbor intermediate size black holes, which are accreting at ∌0.5\sim 0.5 times their Eddington Luminosity. The radiative mechanism for hard ELX, seems to be Inverse Comptonization, which in contrast to standard black holes systems, is probably saturated.Comment: Accepted for publication in Astrophysical Journal. 9 pages. Complete long Tables 4 and 5 are given as tab4.tex and tab5.tex separatel

    Spectral State Transitions of the Ultraluminous X-ray Sources X-1 and X-2 in NGC 1313

    Get PDF
    X-ray spectral state transitions are a key signature of black hole X-ray binaries and follow a well-defined pattern. We examined 12 XMM-Newton observations of the nearby spiral galaxy NGC 1313, which harbors two compact ultraluminous X-ray sources (ULXs), X-1 and X-2, in order to determine if the state transitions in ULXs follow the same pattern. For both sources, the spectra were adequately fitted by an absorbed power-law with the addition of a low temperature (kT=0.1~0.3 keV) disk blackbody component required in 6 of the 12 observations. As the X-ray luminosity of X-1 increases to a maximum at 3x10^40 ergs/s, the power-law photon index softens to 2.5-3.0. This behavior is similar to the canonical spectral state transitions in Galactic black hole binaries, but the source never enters the high/soft or thermal dominant state and instead enters the steep power-law state at high luminosities. X-2 has the opposite behavior and appears to be in the hard state, with a photon index of Gamma=1.7-2.0 at high luminosity, but can soften to Gamma=2.5 at the lower luminosities.Comment: 5 pages, 2 figures, submitted to ApJL on May 26t

    Elemental Abundances of Nearby Galaxies through High Signal-to-Noise XMM-Newton Observations of ULXs

    Get PDF
    (abridged) In this paper, we examined XMM Newton EPIC spectra of 14 ultra-luminous X-ray sources (ULXs)in addition to the XMM RGS spectra of two sources (Holmberg II X-1 and Holmberg IX X-1). We determined oxygen and iron abundances of the host galaxy's interstellar medium (ISM) using K-shell (O) and L-shell (Fe) X-ray photo-ionization edges towards these ULXs. We found that the oxygen abundances closely matched recent solar abundances for all of our sources, implying that ULXs live in similar local environments despite the wide range of galaxy host properties. Also, we compare the X-ray hydrogen column densities (n_H) for 8 ULX sources with column densities obtained from radio H I observations. The X-ray model n_H values are in good agreement with the H I n_H values, implying that the hydrogen absorption towards the ULXs is not local to the source (with the exception of the source M81 XMM1). In order to obtain the column density and abundance values, we fit the X-ray spectra of the ULXs with a combined power law and one of several accretion disk models. We tested the abundances obtained from the XSPEC models bbody, diskbb, grad, and diskpn along with a power law, finding that the abundances were independent of the thermal model used. We comment on the physical implications of these different model fits. We also note that very deep observations allow a breaking of the degeneracy noted by Stobbart et al. (2006) favoring a high mass solution for the absorbed grad + power law model.Comment: 18 pages, accepted to Ap

    The hard X-ray spectral evolution in X-ray binaries and its application to constrain the black hole mass of ultraluminous X-ray sources

    Full text link
    We investigate the relationship between the hard X-ray photon index Γ\Gamma and the Eddington ratio (Ο=LX(0.5−25keV)/LEdd\xi=L_{X}(0.5-25 \rm keV)/L_{Edd}) in six X-ray binaries (XRBs) with well constrained black hole masses and distances. We find that different XRBs follow different anti-correlations between Γ\Gamma and Ο\xi when Ο\xi is less than a critical value, while Γ\Gamma and Ο\xi generally follow the same positive correlation when Ο\xi is larger than the critical value. The anti-correlation and the positive correlation may suggest that they are in different accretion modes (e.g., radiatively inefficient accretion flow (RIAF) and standard disk). We fit both correlations with the linear least-square method for individual sources, from which the crosspoint of two fitted lines is obtained. Although the anti-correlation varies from source to source, the crosspoints of all sources roughly converge to the same point with small scatter(logâĄÎŸ=−2.1±0.2,Γ=1.5±0.1\log \xi=-2.1\pm0.2, \Gamma=1.5\pm 0.1), which may correspond to the transition point between RIAF and standard accretion disk. Motivated by the observational evidence for the similarity of the X-ray spectral evolution of ultraluminous X-ray sources (ULXs) to that of XRBs, we then constrain the black hole masses for seven ULXs assuming that their X-ray spectral evolution is similar to that of XRBs. We find that the BH masses of these seven luminous ULXs are around 10^{4}\msun, which are typical intermediate-mass BHs (IMBHs). Our results are generally consistent with the BH masses constrained from the timing properties (e.g., break frequency) or the model fitting with a multi-color disk.Comment: accepted for publication in ApJ, 18 pages, 2 figures, Comments is welcomed

    Accretion Disk Spectra of the Brightest Ultra-luminous X-ray Source in M82

    Get PDF
    Emission spectra of hot accretion disks characteristic of advection dominated accretion flow (ADAF) models are investigated for comparison with the brightest ultra-luminous source, X-1, in the galaxy M82. If the spectral state of the source is similar to the low luminosity hard state of stellar mass black holes in our Galaxy, a fit to the {\it Chandra} X-ray spectrum and constraints from the radio and infrared upper limits, require a black hole mass in the range of 9 \times 10^4 - 5 \times 10^5 \msun. Lower black hole masses (\la 10^4 \msun) are possible if M82 X-1 corresponds to the high luminosity hard state of Galactic black hole X-ray binary sources. Both of these spectrally degenerate hot accretion disk solutions lead to an intermediate mass black hole interpretation for M82 X-1. Since these solutions have different spectral variability with X-ray luminosity and predict different infrared emission, they can be distinguished by future off axis {\it Chandra} observations or simultaneous sensitive infrared detections.Comment: 17 pages, 2 figures; accepted by Ap
    • 

    corecore