354 research outputs found

    Desecrations by Matt Rader

    Get PDF
    Review of Matt Rader\u27s Desecrations

    X-ray Localization of the Globular Cluster G1 with XMM-Newton

    Get PDF
    We present an accurate X-ray position of the massive globular cluster G1 by using XMM-Newton and the Hubble Space Telescope (HST). The X-ray emission of G1 has been detected recently with XMM-Newton. There are two possibilities for the origin of the X-ray emission. It can be either due to accretion of the central intermediate-mass black hole, or by ordinary low-mass X-ray binaries. The precise location of the X-ray emission might distinguish between these two scenarios. By refining the astrometry of the XMM-Newton and HST data, we reduced the XMM-Newton error circle to 1.5". Despite the smaller error circle, the precision is not sufficient to distinguish an intermediate-mass black hole and luminous low-mass X-ray binaries. This result, however, suggests that future Chandra observations may reveal the origin of the X-ray emission.Comment: 4 pages, 2 figures; accepted for publication in Ap

    Optical studies of the ultraluminous X-ray source NGC1313 X-2

    Full text link
    NGC1313 X-2 was among the first ultraluminous X-ray sources discovered, and has been a frequent target of X-ray and optical observations. Using the HST/ACS multi-band observations, this source is identified with a unique counterpart within an error circle of 0\farcs2. The counterpart is a blue star on the edge of a young cluster of 107\le10^7 years amid a dominant old stellar population. Its spectral energy distribution is consistent with that for a Z=0.004 star with 8.5 MM_\odot about 5×1065\times10^6 years old, or for an O7 V star at solar metallicity. The counterpart exhibited significant variability of Δm=0.153±0.033\Delta m = 0.153\pm0.033 mag between two F555W observations separated by three months, reminiscent of the ellipsoidal variability due to the orbital motion of this ULX binary.Comment: 21 pages, 7 figures, scheduled for the ApJ June 10, 2007, v662n 1 issu

    New insights into ultraluminous X-ray sources from deep XMM-Newton observations

    Full text link
    The controversy over whether ultraluminous X-ray sources (ULXs) contain a new intermediate-mass class of black holes (IMBHs) remains unresolved. We present new analyses of the deepest XMM-Newton observations of ULXs that address their underlying nature. We examine both empirical and physical modelling of the X-ray spectra of a sample of thirteen of the highest quality ULX datasets, and find that there are anomalies in modelling ULXs as accreting IMBHs with properties simply scaled-up from Galactic black holes. Most notably, spectral curvature above 2 keV in several sources implies the presence of an optically-thick, cool corona. We also present a new analysis of a 100 ks observation of Holmberg II X-1, in which a rigorous analysis of the temporal data limits the mass of its black hole to no more than 100 solar masses. We argue that a combination of these results points towards many (though not necessarily all) ULXs containing black holes that are at most a few 10s of solar mass in size.Comment: 5 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources

    Full text link
    The nature of ultraluminous X-ray sources in nearby galaxies is one of the major open questions in modern X-ray astrophysics. One possible explanation for these objects is an inhomogeneous, radiation dominated accretion disk around a 10M\sim 10 M_{\odot} black hole -- the so-called ``photon bubble'' model. While previous studies of this model have focused primarily on its radiation-hydrodynamics aspects, in this paper, we provide an analysis of its X-ray spectral (continuum and possible edge and line) characteristics. Compton reflection between high and low density regions in the disk may provide the key to distinguishing this model from others, such as accretion onto an intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation transport code with the XSTAR code for reflection to simulate the photon spectra produced in a photon bubble model for ULXs. We find that reflection components tend to be very weak and in most cases not observable, and make predictions for the shape of the high-energy Comptonizing spectra. In many cases the Comptonization dominates the spectra even down to \sim a few keV. In one simulation, a \sim 9 \kev feature was found, which may be considered a signature of photon bubbles in ULXs; furthermore, we make predictions of high energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa

    The scaling of X-ray variability with luminosity in Ultra-luminous X-ray sources

    Full text link
    We investigated the relationship between the X-ray variability amplitude and X-ray luminosity for a sample of 14 bright Ultra-luminous X-ray sources (ULXs) with XMM-Newton/EPIC data, and compare it with the well established similar relationship for Active Galactic Nuclei (AGN). We computed the normalised excess variance in the 2-10 keV light curves of these objects and their 2-10 keV band intrinsic luminosity. We also determined model "variability-luminosity" relationships for AGN, under several assumptions regarding their power-spectral shape. We compared these model predictions at low luminosities with the ULX data. The variability amplitude of the ULXs is significantly smaller than that expected from a simple extrapolation of the AGN "variability-luminosity" relationship at low luminosities. We also find evidence for an anti-correlation between the variability amplitude and L(2-10 keV) for ULXs. The shape of this relationship is consistent with the AGN data but only if the ULXs data are shifted by four orders of magnitudes in luminosity. Most (but not all) of the ULXs could be "scaled-down" version of AGN if we assume that: i) their black hole mass and accretion rate are of the order of ~(2.5-30)x 10E+03 Msolar and ~ 1-80 % of the Eddington limit, and ii) their Power Spectral Density has a doubly broken power-law shape. This PDS shape and accretion rate is consistent with Galactic black hole systems operating in their so-called "low-hard" and "very-high" states.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in A&

    The dependence of the estimated luminosities of ULX on spectral models

    Full text link
    Data from {\it Chandra} observations of thirty nearby galaxies were analyzed and 365 X-ray point sources were chosen whose spectra were not contaminated by excessive diffuse emission and not affected by photon pile up. The spectra of these sources were fitted using two spectral models (an absorbed power-law and a disk blackbody) to ascertain the dependence of estimated parameters on the spectral model used. It was found that the cumulative luminosity function depends on the choice of the spectral model, especially for luminosities >1040> 10^{40} ergs/s. In accordance with previous results, a large number (80\sim 80) of the sources have luminosities >1039> 10^{39} ergs/s (Ultra-Luminous X-ray sources) with indistinguishable average spectral parameters (inner disk temperature 1\sim 1 keV and/or photon index Γ2\Gamma \sim 2) with those of the lower luminosities ones. After considering foreground stars and known background AGN,we identify four sources whose minimum luminosity exceed 104010^{40} ergs/s, and call them Extremely Luminous X-ray sources (ELX). The spectra of these sources are in general better represented by the disk black body model than the power-law one. These ELX can be grouped into two distinct spectral classes. Two of them have an inner disk temperature of <0.5< 0.5 keV and hence are called ``supersoft'' ELX, while the other two have temperatures 1.3\gtrsim 1.3 keV and are called ``hard'' ELX. The estimated inner disk temperatures of the supersoft ELX are compatible with the hypothesis that they harbor intermediate size black holes, which are accreting at 0.5\sim 0.5 times their Eddington Luminosity. The radiative mechanism for hard ELX, seems to be Inverse Comptonization, which in contrast to standard black holes systems, is probably saturated.Comment: Accepted for publication in Astrophysical Journal. 9 pages. Complete long Tables 4 and 5 are given as tab4.tex and tab5.tex separatel

    In-depth studies of the NGC 253 ULXs with XMM-Newton: remarkable variability in ULX1, and evidence for extended coronae

    Full text link
    We examined the variability of three ultra-luminous X-ray sources (ULXs) in the 2003, 110 ks XMM-Newton observation of NGC253. Remarkably, we discovered ULX1 to be three times more variable than ULX2 in the 0.3--10 keV band, even though ULX2 is brighter. Indeed, ULX1 exhibits a power density spectrum that is consistent with the canonical high state or very high/steep power law state, but not the canonical low state. The 0.3--10 keV emission of ULX1 is predominantly non-thermal, and may be related to the very high state. We also fitted the ULX spectra with disc blackbody, slim disc and convolution Comptonization (SIMPL x DISKBB) models. The brightest ULX spectra are usually described by a two emission components (disc blackbody + Comptonized component); however, the SIMPL model results in a single emission component, and may help determine whether the well known soft excess is a feature of ULX spectra or an artifact of the two-component model. The SIMPL models were rejected for ULX3 (and also for the black hole + Wolf-Rayet binary IC10 X-1); hence, we infer that the observed soft-excesses are genuine features of ULX emission spectra. We use an extended corona scenario to explain the soft excess seen in all the highest quality ULX spectra, and provide a mechanism for stellar mass black holes to exhibit super-Eddington luminosities while remaining locally sub-Eddington.Comment: Accepted for publication in MNRAS. 7 pages, 5 figure

    Elemental Abundances of Nearby Galaxies through High Signal-to-Noise XMM-Newton Observations of ULXs

    Get PDF
    (abridged) In this paper, we examined XMM Newton EPIC spectra of 14 ultra-luminous X-ray sources (ULXs)in addition to the XMM RGS spectra of two sources (Holmberg II X-1 and Holmberg IX X-1). We determined oxygen and iron abundances of the host galaxy's interstellar medium (ISM) using K-shell (O) and L-shell (Fe) X-ray photo-ionization edges towards these ULXs. We found that the oxygen abundances closely matched recent solar abundances for all of our sources, implying that ULXs live in similar local environments despite the wide range of galaxy host properties. Also, we compare the X-ray hydrogen column densities (n_H) for 8 ULX sources with column densities obtained from radio H I observations. The X-ray model n_H values are in good agreement with the H I n_H values, implying that the hydrogen absorption towards the ULXs is not local to the source (with the exception of the source M81 XMM1). In order to obtain the column density and abundance values, we fit the X-ray spectra of the ULXs with a combined power law and one of several accretion disk models. We tested the abundances obtained from the XSPEC models bbody, diskbb, grad, and diskpn along with a power law, finding that the abundances were independent of the thermal model used. We comment on the physical implications of these different model fits. We also note that very deep observations allow a breaking of the degeneracy noted by Stobbart et al. (2006) favoring a high mass solution for the absorbed grad + power law model.Comment: 18 pages, accepted to Ap

    Black hole mass estimates from soft X-ray spectra

    Get PDF
    In the absence of direct kinematic measurements, the mass of an accreting black hole is sometimes inferred from the X-ray spectral parameters of its accretion disk; specifically, from the temperature and normalization of a disk-blackbody model fit. Suitable corrections have to be introduced when the accretion rate approaches or exceeds the Eddington limit. We summarize phenomenological models that can explain the very high state, with apparently higher disk temperatures and lower inner-disk radii. Conversely, ultraluminous X-ray sources often contain cooler disks with large characteristic radii. We introduce another phenomenological model for this accretion state. We argue that a standard disk dominates the radiative output for radii larger than a characteristic transition radius R_c ~ mdot x R_{ISCO}, where mdot is the accretion rate in Eddington units and R_{ISCO} is the innermost stable orbit. For R_{ISCO} < R < R_c, most of the accretion power is released via non-thermal processes. We predict the location of such sources in a luminosity-temperature plot. We conclude that black holes with masses ~ 50-100 Msun accreting at mdot ~ 10-20 may explain the X-ray properties of many ULXs.Comment: 14 pages, accepted for publication on Advances in Space Research. Based on work presented at the 2006 Cospar Scientific Assembl
    corecore