221 research outputs found
Recommended from our members
Greater Sage-grouse Comprehensive Conservation Strategy
The overall goal of the Greater Sage-grouse Comprehensive Conservation Strategy (Strategy) is to maintain and enhance populations and distribution of sagegrouse by protecting and improving sagebrush habitats and ecosystems that sustain these populations. This Strategy outlines the critical need to develop the associations among local, state, provincial, tribal, and federal agencies, non-governmental organizations, and individual citizens to design and implement cooperative actions to support robust populations of sage-grouse and the landscapes and habitats upon which they depend. The justification for this effort is widespread concern for declining populations and reduced distribution of sage-grouse
Sage‐Grouse Breeding and Late Brood‐Rearing Habitat Guidelines in Utah
Delineation, protection, and restoration of habitats provide the basis for endangered and threatened species recovery plans. Species recovery plans typically contain guidelines that provide managers with a scientific basis to designate and manage critical habitats. As such, habitat guidelines are best developed using data that capture the full diversity of ecological and environmental conditions that provide habitat across the species’ range. However, when baseline information, which fails to capture habitat diversity, is used to develop guidelines, inconsistencies and problems arise when applying those guidelines to habitats within an ecologically diverse landscape. Greater sage‐grouse (Centrocercus urophasianus; sage‐ grouse) populations in Utah, USA, reflect this scenario—published range‐wide habitat guidelines developed through a literature synthesis did not include data from the full range of the species. Although all sage‐ grouse are considered sagebrush obligates (Artemisia spp.), the species occupies a diversity of sagebrush communities from shrub‐dominated semideserts in the southwest to more perennial grass‐dominated sagebrush‐steppe in the northeast portions of their distribution. Concomitantly, local ecological site and environmental conditions may limit the ability of managers to achieve broader range‐wide habitat guidelines. We combined microsite habitat vegetation parameters from radiomarked sage‐grouse nest and brood locations with state‐wide spatially continuous vegetation, climatic, and elevation data in a cluster analysis to develop empirically based sage‐grouse habitat guidelines that encompass the range of ecological and environmental variation across Utah. Using this novel approach, we identified 3 distinct clusters of sage‐grouse breeding (i.e., nesting and early brood‐rearing) and late brood‐rearing habitats in Utah. For each cluster, we identified specific vegetation recommendations that managers can use to assess sage‐grouse breeding and late brood‐rearing habitat. Our results provide relevant guidelines to Utah’s sage‐grouse populations and are feasible given the unique ecological variation found therein. This approach may have application to other species that occupy diverse habitats and physiographic regions
Potential for Post-Fire Recovery of Greater Sage-Grouse Habitat
In the western United States, fire has become a significant concern in the management of big sagebrush (Artemisia tridentata Nutt.) ecosystems. This is due to large‐scale increases in cover of the fire‐prone invasive annual cheatgrass (Bromus tectorum L.) and, concurrently, concerns about declining quantity and quality of habitat for Greater Sage‐grouse (Centrocercus urophasianus). The prevailing paradigm is that fire results in a loss of sage‐grouse habitat on timescales relevant to conservation planning (i.e., 1–20 yr), since sagebrush cover can take many more years to recover post‐fire. However, fire can have effects that improve sage‐grouse habitat, including stimulating perennial grass and forb production. The conditions under which fire results in the permanent loss or enhancement of sage‐grouse habitat are not well understood. We used long‐term data from the Utah Division of Wildlife Resources Range Trend Project to assess short‐term (1–4 yr post‐treatment) and long‐term (6–10 yr post‐treatment) effects of fire on vegetation cover at 16 sites relative to sage‐grouse habitat vegetation guidelines. Sagebrush cover remained low post‐fire at sites considered historically unsuitable for sage‐grouse (10%) pre‐fire sagebrush cover, sagebrush cover decreased to10% cover. Post‐fire sagebrush cover was positively related to elevation. Across all sites, perennial grasses and forbs increased in cover to approximately meet the habitat vegetation guidelines for sage‐grouse. Cheatgrass cover did not change in response to fire, and increased perennial grass cover appears to have played an important role in suppressing cheatgrass. Our results indicate that, while fire poses a potential risk for sage‐grouse habitat loss and degradation, burned sites do not necessarily need to be considered permanently altered, especially if they are located at higher elevation, have high sagebrush cover pre‐fire, and are reseeded with perennial grasses and forbs post‐fire. However, our results confirm that fire at more degraded sites, for example, those wit
Case report of MR perfusion imaging in Sinking Skin Flap Syndrome: growing evidence for hemodynamic impairment
<p>Abstract</p> <p>Background</p> <p>The syndrome of the sinking skin flap (SSSF) with delayed sensorimotor deficits after craniectomy is not well known and often neglected. Among various postulated causes, there is evidence that disturbed brain perfusion may be related to the observed symptoms, and that cranioplasty reliably alleviates these symptoms. We report a case of sinking skin flap syndrome (SSFS) with recovery from neurological sensorimotor deficits after cranioplasty correlated with pre- and postsurgical MR brain perfusion studies.</p> <p>Case Presentation</p> <p>A 42-year-old woman presented with slowly progressive sensorimotor paresis of her left arm after decompressive extensive craniectomy due to subarachnoid hemorrhage four months ago. Her right cranium showed a "sinking skin flap". After cranioplastic repair of her skull defect, the patient fully recovered from her symptoms. Before cranioplasty, reduced brain perfusion in the right central cortical region was observed in MR-perfusion images. After cranioplasty, a marked increase in brain perfusion was observed which correlated with objective clinical recovery.</p> <p>Conclusion</p> <p>There is increasing evidence that impaired blood flow is responsible for delayed motor deficits in patients with sinking skin flap syndrome in the area of compressed brain regions. Symptoms should be evaluated by brain perfusion imaging complementing surgical decision-making.</p
Crowdfunding in Africa: Opportunities and Challenges
publishedVersio
Helper Response to Experimentally Manipulated Predation Risk in the Cooperatively Breeding Cichlid Neolamprologus pulcher
Background
We manipulated predation risk in a field experiment with the cooperatively breeding cichlid Neolamprologus pulcher by releasing no predator, a medium- or a large-sized fish predator inside underwater cages enclosing two to three natural groups. We assessed whether helpers changed their helping behaviour, and whether within-group conflict changed, depending on these treatments, testing three hypotheses: ‘pay-to-stay’ PS, ‘risk avoidance’ RA, or (future) reproductive benefits RB. We also assessed whether helper food intake was reduced under risk, because this might reduce investments in other behaviours to save energy.
Methodology/Principal Findings
Medium and large helpers fed less under predation risk. Despite this effect helpers invested more in territory defence, but not territory maintenance, under the risk of predation (supporting PS). Experimentally covering only the breeding shelter with sand induced more helper digging under predation risk compared to the control treatment (supporting PS). Aggression towards the introduced predator did not differ between the two predator treatments and increased with group member size and group size (supporting PS and RA). Large helpers increased their help ratio (helping effort/breeder aggression received, ‘punishment’ by the dominant pair in the group) in the predation treatments compared to the control treatment, suggesting they were more willing to PS. Medium helpers did not show such effects. Large helpers also showed a higher submission ratio (submission/ breeder aggression received) in all treatments, compared to the medium helpers (supporting PS).
Conclusions/Significance
We conclude that predation risk reduces helper food intake, but despite this effect, helpers were more willing to support the breeders, supporting PS. Effects of breeder punishment suggests that PS might be more important for large compared to the medium helpers. Evidence for RA was also detected. Finally, the results were inconsistent with RB
- …