29 research outputs found

    Extracellular Molecules Involved in Cancer Cell Invasion

    No full text
    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

    Unexploited Antineoplastic Effects of Commercially Available Anti-Diabetic Drugs

    No full text
    The development of efficacious antitumor compounds with minimal toxicity is a hot research topic. Numerous cancer cell targeted agents are evaluated daily in laboratories for their antitumorigenicity at the pre-clinical level, but the process of their introduction into the market is costly and time-consuming. More importantly, even if these new antitumor agents manage to gain approval, clinicians have no former experience with them. Accruing evidence supports the idea that several medications already used to treat pathologies other than cancer display pleiotropic effects, exhibiting multi-level anti-cancer activity and chemosensitizing properties. This review aims to present the anticancer properties of marketed drugs (i.e., metformin and pioglitazone) used for the management of diabetes mellitus (DM) type II. Mode of action, pre-clinical in vitro and in vivo or clinical data as well as clinical applicability are discussed here. Given the precious multi-year clinical experience with these non-antineoplastic drugs their repurposing in oncology is a challenging alternative that would aid towards the development of therapeutic schemes with less toxicity than those of conventional chemotherapeutic agents. More importantly, harnessing the antitumor function of these agents would save precious time from bench to bedside to aid the fight in the arena of cancer

    Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: The use of octreotide and chloroquine in oncology

    No full text
    Pleiotropy in biological systems and their targeting allows many pharmaceuticals to be used for multiple therapeutic purposes. Fully exploiting the therapeutic properties of drugs that are already marketed would be highly advantageous. This is especially the case in the field of oncology, where the ineffectiveness of typical anticancer agents is a common issue, while the development of novel anticancer agents is a costly and particularly time-consuming process. Octreotide and chloroquine are two pharmaceuticals that exhibit profound antitumorigenic activities. However, the current therapeutic use of octreotide is restricted primarily to the management of acromegaly and neuroendocrine tumors, both of which are rare medical conditions. Similarly, chloroquine is used mainly for the treatment of malaria, which is designated as a rare disease in Western countries. This limited exploitation contradicts the experimental findings of numerous studies outlining the possible expansion of the use of octreotide to include the treatment of common human malignancies and the repositioning of chloroquine in oncology. Herein, we review the current knowledge on the antitumor function of these two agents stemming from preclinical or clinical experimentation. In addition, we present in silico evidence on octreotide potentially binding to multiple Wnt-pathway components. This will hopefully aid in the design of new efficacious anticancer therapeutic regimens with minimal toxicity, which represents an enormous unmet demand in oncology. © 2019 Papanagnou et al

    The Role of miRNAs in Common Inflammatory Arthropathies: Osteoarthritis and Gouty Arthritis

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNA species that are highly evolutionarily conserved, from higher invertebrates to man. Up to 1000 miRNAs have been identified in human cells thus far, where they are key regulators of the expression of numerous targets at the post-transcriptional level. They are implicated in various processes, including cell differentiation, metabolism, and inflammation. An expanding list of miRNAs is known to be involved in the pathogenesis of common, non-autoimmune inflammatory diseases. Interestingly, osteoarthritis (OA) is now being conceptualized as a metabolic disease, as there is a correlation among hyperuricemia and metabolic syndrome (MetS). Experimental evidence suggests that metabolic deregulation is a commonality between these different pathological entities, and that miRNAs are key players in the modulation of metabolic routes. In light of these findings, this review discusses the role of miRNAs in OA and gouty arthritis, as well as the possible therapeutic targetability of miRNAs in these diseases

    Toward fully exploiting the therapeutic potential of marketed pharmaceuticals: the use of octreotide and chloroquine in oncology

    No full text
    Panagiota Papanagnou,1,* Georgios E Papadopoulos,2,* Theodora Stivarou,3 Anastasios Pappas1 1Department of Urology, Agios Savvas Cancer Hospital, Athens 11522, Greece; 2Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece; 3Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece *These authors contributed equally to this work Abstract: Pleiotropy in biological systems and their targeting allows many pharmaceuticals to be used for multiple therapeutic purposes. Fully exploiting the therapeutic properties of drugs that are already marketed would be highly advantageous. This is especially the case in the field of oncology, where the ineffectiveness of typical anticancer agents is a common issue, while the development of novel anticancer agents is a costly and particularly time-consuming process. Octreotide and chloroquine are two pharmaceuticals that exhibit profound antitumorigenic activities. However, the current therapeutic use of octreotide is restricted primarily to the ma­nagement of acromegaly and neuroendocrine tumors, both of which are rare medical conditions. Similarly, chloroquine is used mainly for the treatment of malaria, which is designated as a rare disease in Western countries. This limited exploitation contradicts the experimental findings of numerous studies outlining the possible expansion of the use of octreotide to include the treatment of common human malignancies and the repositioning of chloroquine in oncology. Herein, we review the current knowledge on the antitumor function of these two agents stemming from preclinical or clinical experimentation. In addition, we present in silico evidence on octreotide potentially binding to multiple Wnt-pathway components. This will hopefully aid in the design of new efficacious anticancer therapeutic regimens with minimal toxicity, which represents an enormous unmet demand in oncology. Keywords: drug repositioning, pleiotropy, neuroendocrine tumors, lysosomotropic agent, cancer, dockin

    Marketed drugs used for the management of hypercholesterolemia as anticancer armament

    No full text
    Panagiota Papanagnou,1 Theodora Stivarou,2 Ioannis Papageorgiou,1 Georgios E Papadopoulos,3 Anastasios Pappas1 1Department of Urology, Agios Savvas Cancer Hospital, Athens, Greece; 2Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece; 3Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece Abstract: The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting. Keywords: antihypercholesterolemic agents, cancer, synergism, repurposin

    Marketed drugs used for the management of hypercholesterolemia as anticancer armament

    No full text
    The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting. © 2017 Papanagnou et al
    corecore