4 research outputs found

    Performance evaluation of three and multi-three-phase electrical machines using off-line mapping

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    General Torque Enhancement Approach for a Nine-Phase Surface PMSM with Built-in Fault Tolerance

    Get PDF
    The paper investigates maximum possible torque improvement in a two-pole surface permanent magnet synchronous machine (PMSM) with a reduced magnet span, which causes production of highly non-sinusoidal back-EMF. It contains a high third and fifth harmonics, which can be used for the torque enhancement, using stator current harmonic injection. Optimal magnet span is studied first and it is shown that with such a value the machine would be able to develop an insignificantly lower maximum torque than with the full magnet span. Next, field-oriented control (FOC) algorithm, which considers all non-fundamental EMF components lower than the machine phase number, is devised. Using maximum-torque per Ampere (MTPA) principles, optimal ratios between fundamental and all other injected components are calculated and then used in the drive control. The output torque can be in this way increased up to 45% with respect to the one obtainable with fundamental current only. Alternatively, for the same load torque, stator current RMS value can be reduced by 45%. Last but not least, a method for position sensor fault mitigation is introduced. It is based on the alternative use of a back-EMF harmonic for rotor position estimation, instead of the torque enhancement. Experimental verification is provided throughout for all the relevant aspects

    Off-Line Efficiency Mapping of Induction Motors Operated in Wide Torque-Speed Ranges

    Get PDF
    In the context of a progressive component virtualization for energetic assessments in variable speed and load operations, this paper presents a methodology for computing the efficiency maps of three-phase induction motors. The proposed approach is based on the conventional machine equivalent circuit to quickly obtain a set of efficiency maps at different machine temperatures and supply voltage levels. The well-known no-load and locked-rotor tests are used to determine the motor parameters at different frequencies and voltages, taking into account the machine nonlinearities and the iron losses. The approach has been validated on an 11 kW, 4 poles, 50 Hz induction motor tested in different operating conditions

    Accurate Induction Machines Efficiency Mapping Computed by Standard Test Parameters

    Get PDF
    The extensive electrification process that is taking hold in several applications makes increasingly necessary the virtualization of electric components for energetic and performance assessments during the system design stage. For this purpose, this paper proposes a straightforward methodology for computing the efficiency maps of induction machines operated in wide torque-speed ranges. The modeling approach is based on the induction machine equivalent circuit defined in the rotor dq coordinates. The procedure allows computing a set of efficiency maps at different machine temperatures and supply voltage levels, both for motor and generator operation modes. The equivalent circuit parameters at different frequencies and voltages are determined by means of the well-known no-load and locked-rotor tests, thus including in the modelling the machine nonlinearities, skin effect and the iron losses. The proposed methodology has been validated on a 10 kW, 4-pole induction machine. The comparison between computed and experimental efficiency maps for different operating conditions, confirm the validity of the proposed methodology
    corecore