93 research outputs found

    QTL Analysis of Shading Sensitive Related Traits in Maize under Two Shading Treatments

    Get PDF
    During maize development and reproduction, shading stress is an important abiotic factor influencing grain yield. To elucidate the genetic basis of shading stress in maize, an F2:3 population derived from two inbred lines, Zhong72 and 502, was used to evaluate the performance of six traits under shading treatment and full-light treatment at two locations. The results showed that shading treatment significantly decreased plant height and ear height, reduced stem diameter, delayed day-to-tassel (DTT) and day-to-silk (DTS), and increased anthesis-silking interval (ASI). Forty-three different QTLs were identified for the six measured traits under shading and full light treatment at two locations, including seven QTL for plant height, nine QTL for ear height, six QTL for stem diameter, seven QTL for day-to-tassel, six QTL for day-to-silk, and eight QTL for ASI. Interestingly, three QTLs, qPH4, qEH4a, and qDTT1b were detected under full sunlight and shading treatment at two locations simultaneously, these QTL could be used for selecting elite hybrids with high tolerance to shading and high plant density. And the two QTL, qPH10 and qDTS1a, were only detected under shading treatment at two locations, should be quit for selecting insensitive inbred line in maize breeding procedure by using MAS method

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p

    Effect of Intrathoracic Pressure on Left Ventricular Performance

    No full text
    Left ventricular dysfunction is common in respiratory-distress syndrome, asthma and obstructive lung disease. To understand the contribution of intrathoracic pressure to this problem, we studied the effects of Valsalva and Müller maneuvers on left ventricular function in eight patients. Implantation of intramyocardial markers permitted beat-by-beat measurement of the velocity of fiber shortening (VCF) and left ventricular volume. During the Müller maneuver, VCF and ejection fraction decreased despite an increase in left ventricular volume and a decline in arterial pressure. In addition, when arterial pressure was corrected for changes in intrapleural pressure during either maneuver it correlated better with left ventricular end-systolic volumes than did uncorrected arterial pressures. These findings suggest that negative intrathoracic pressure affects left ventricular function by increasing left ventricular transmural pressures and thus afterload. We conclude that large intrathoracic-pressure changes, such as those that occur in acute pulmonary disease, can influence cardiac performance. (N Engl J Med 301:453–459, 1979) PREVIOUS investigators12345 have noted that respiration and respiratory maneuvers may affect cardiac function. The exact mechanisms by which left ventricular function is depressed during exacerbation of chronic obstructive lung disease, asthma, adult respiratory-distress syndrome and restrictive lung disease have been a subject of continuing controversy.67891011 Franklin et al.1 and Hoffman et al.4 measured instantaneous flows in the aorta and pulmonary artery and observed that, during inspiration, right ventricular stroke volume increased but left ventricular stroke volume decreased. These changes were attributed to alterations in ventricular filling produced by changes in intrathoracic pressure during normal inspiration. Best and Taylor12 have stated. © 1979, Massachusetts Medical Society. All rights reserved
    corecore