7 research outputs found

    Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.

    No full text
    The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only ∼85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (βα)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions

    EST-SSRs Characterization and \u3cem\u3eIn-Silico\u3c/em\u3e Alignments with Linkage Map SSR Loci in Grape (\u3cem\u3eVitis\u3c/em\u3e L.) Genome

    No full text
    11,581 grape (Vitis L.) EST-SSRs were produced and characterized from a total of 381,609 grape ESTs. Among the EST-SSRs, the tri repeat (5,560, 45.4%) represented the most abundant class of microsatellites in grape EST. Most of grape EST-SSR motifs fall within 18-24 bps in length. The EST-SSRs tri-repeats occurred a higher percentage in 5′-end (59.3%) than in 3′-end (48.3%). And EST-SSR tri-repeats had abundant codon repeats for putative amino acid runs as Proline, Arginine in grape ESTs. To better utilizing these markers, 142 of newly developed and validated EST SSR loci as well as 223 linkage map SSR loci were in silico aligned and mapped in grape genome. The orders of these SSR loci in the chromosomal physical locations and in the linkage groups were compared, and about twenty linkage map loci positions were switched or rearranged in grape genome. The EST-SSR markers extended the linkage map in grape genome. The method of in silico mapping reported in this study provided an initial collection for grape mapping resources. This approach offers great opportunities to understand the genetic variations in nucleotide sequences differences in physical map, and genetic recombination in linkage maps, as well as benefits for markers enrichment in a specific grape genome region for fine mapping or QTL mapping

    Implications of nitrogen nutrition for grapes, fermentation and wine

    No full text
    corecore