39 research outputs found

    A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    Get PDF
    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-beta (A beta) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity

    COVID-19 and beyond: Reassessing the role of thymosin alpha1 in lung infections

    No full text
    The recent COVID-19 pandemic has catalyzed the attention of the scientific community to the long-standing issue of lower respiratory tract infections. The myriad of airborne bacterial, viral and fungal agents to which humans are constantly exposed represents a constant threat to susceptible individuals and bears the potential to reach a catastrophic scale when the ease of inter-individual transmission couples with a severe pathogenicity. While we might be past the threat of COVID-19, the risk of future outbreaks of respiratory infections is tangible and argues for a comprehensive assessment of the pathogenic mechanisms shared by airborne pathogens. On this regard, it is clear that the immune system play a major role in dictating the clinical course of the infection. A balanced immune response is required not only to disarm the pathogens, but also to prevent collateral tissue damage, thus moving at the interface between resistance to infection and tolerance. Thymosin alpha1 (Tα1), an endogenous thymic peptide, is increasingly being recognized for its ability to work as an immunoregulatory molecule able to balance a derailed immune response, working as immune stimulatory or immune suppressive in a context-dependent manner. In this review, we will take advantage from the recent work on the COVID-19 pandemic to reassess the role of Tα1 as a potential therapeutic molecule in lung infections caused by either defective or exaggerated immune responses. The elucidation of the immune regulatory mechanisms of Tα1 might open a new window of opportunity for the clinical translation of this enigmatic molecule and a potential new weapon in our arsenal against lung infections

    A Shifted Composition of the Lung Microbiota Conditions the Antifungal Response of Immunodeficient Mice

    No full text
    The microbiome, i.e., the communities of microbes that inhabit the surfaces exposed to the external environment, participates in the regulation of host physiology, including the immune response against pathogens. At the same time, the immune response shapes the microbiome to regulate its composition and function. How the crosstalk between the immune system and the microbiome regulates the response to fungal infection has remained relatively unexplored. We have previously shown that strict anaerobes protect from infection with the opportunistic fungus Aspergillus fumigatus by counteracting the expansion of pathogenic Proteobacteria. By resorting to immunodeficient mouse strains, we found that the lung microbiota could compensate for the lack of B and T lymphocytes in Rag1–/– mice by skewing the composition towards an increased abundance of protective anaerobes such as Clostridia and Bacteroidota. Conversely, NSG mice, with major defects in both the innate and adaptive immune response, showed an increased susceptibility to infection associated with a low abundance of strict anaerobes and the expansion of Proteobacteria. Further exploration in a murine model of chronic granulomatous disease, a primary form of immunodeficiency characterized by defective phagocyte NADPH oxidase, confirms the association of lung unbalance between anaerobes and Proteobacteria and the susceptibility to aspergillosis. Consistent changes in the lung levels of short-chain fatty acids between the different strains support the conclusion that the immune system and the microbiota are functionally intertwined during Aspergillus infection and determine the outcome of the infection

    Autophagy and LAP in the Fight against Fungal Infections: Regulation and Therapeutics

    No full text
    Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-Îł and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation

    Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis

    No full text
    Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the “leaky gut” hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology

    Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis

    No full text
    Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis
    corecore