12 research outputs found

    PYRO-NN: Python Reconstruction Operators in Neural Networks

    Full text link
    Purpose: Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the CT reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches are forced to use workarounds for mathematically unambiguously solvable problems. Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan- and cone-beam projectors and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. Results: The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high level Python API allows a simple use of the layers as known from Tensorflow. To demonstrate the capabilities of the layers, the framework comes with three baseline experiments showing a cone-beam short scan FDK reconstruction, a CT reconstruction filter learning setup, and a TV regularized iterative reconstruction. All algorithms and tools are referenced to a scientific publication and are compared to existing non deep learning reconstruction frameworks. The framework is available as open-source software at \url{https://github.com/csyben/PYRO-NN}. Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step towards reproducible researchComment: V1: Submitted to Medical Physics, 11 pages, 7 figure

    Projection image-to-image translation in hybrid X-ray/MR imaging

    Full text link
    The potential benefit of hybrid X-ray and MR imaging in the interventional environment is large due to the combination of fast imaging with high contrast variety. However, a vast amount of existing image enhancement methods requires the image information of both modalities to be present in the same domain. To unlock this potential, we present a solution to image-to-image translation from MR projections to corresponding X-ray projection images. The approach is based on a state-of-the-art image generator network that is modified to fit the specific application. Furthermore, we propose the inclusion of a gradient map in the loss function to allow the network to emphasize high-frequency details in image generation. Our approach is capable of creating X-ray projection images with natural appearance. Additionally, our extensions show clear improvement compared to the baseline method.Comment: In proceedings of SPIE Medical Imaging 201

    Projection-to-Projection Translation for Hybrid X-ray and Magnetic Resonance Imaging

    Get PDF
    Hybrid X-ray and magnetic resonance (MR) imaging promises large potential in interventional medical imaging applications due to the broad variety of contrast of MRI combined with fast imaging of X-ray-based modalities. To fully utilize the potential of the vast amount of existing image enhancement techniques, the corresponding information from both modalities must be present in the same domain. For image-guided interventional procedures, X-ray fluoroscopy has proven to be the modality of choice. Synthesizing one modality from another in this case is an ill-posed problem due to ambiguous signal and overlapping structures in projective geometry. To take on these challenges, we present a learning-based solution to MR to X-ray projection-to-projection translation. We propose an image generator network that focuses on high representation capacity in higher resolution layers to allow for accurate synthesis of fine details in the projection images. Additionally, a weighting scheme in the loss computation that favors high-frequency structures is proposed to focus on the important details and contours in projection imaging. The proposed extensions prove valuable in generating X-ray projection images with natural appearance. Our approach achieves a deviation from the ground truth of only 6% and structural similarity measure of 0.913 ± 0.005. In particular the high frequency weighting assists in generating projection images with sharp appearance and reduces erroneously synthesized fine details

    Fully-automatic CT data preparation for interventional X-ray skin dose simulation

    Full text link
    Recently, deep learning (DL) found its way to interventional X-ray skin dose estimation. While its performance was found to be acceptable, even more accurate results could be achieved if more data sets were available for training. One possibility is to turn to computed tomography (CT) data sets. Typically, computed tomography (CT) scans can be mapped to tissue labels and mass densities to obtain training data. However, care has to be taken to make sure that the different clinical settings are properly accounted for. First, the interventional environment is characterized by wide variety of table setups that are significantly different from the typical patient tables used in conventional CT. This cannot be ignored, since tables play a crucial role in sound skin dose estimation in an interventional setup, e. g., when the X-ray source is directly underneath a patient (posterior-anterior view). Second, due to interpolation errors, most CT scans do not facilitate a clean segmentation of the skin border. As a solution to these problems, we applied connected component labeling (CCL) and Canny edge detection to (a) robustly separate the patient from the table and (b) to identify the outermost skin layer. Our results show that these extensions enable fully-automatic, generalized pre-processing of CT scans for further simulation of both skin dose and corresponding X-ray projections.Comment: 6 pages, 4 figures, Bildverarbeitung f\"ur die Medizin 2020, code will be accessible soon (url
    corecore