15 research outputs found

    Treatment of stage I lung cancer detected by computed tomography screening

    Get PDF
    INTRODUCTION: Reducing lung cancer deaths through early detection by computed tomography (CT) screening requires delivery of effective treatment. We performed this retrospective study to determine the types of treatment used for screen-detected stage I lung cancer at our academic center and to compare the demographic and clinical characteristics of patients by type of treatment. METHODS: All persons screened in the lung cancer screening program at our institution through June 16, 2021, were included. Those with screening CT findings needing follow-up were managed through a thoracic surgery clinic. Demographic and clinical characteristics of patients diagnosed with having stage I lung cancer through June 16, 2021, were compared by type of treatment, with follow-up through December 31, 2021. RESULTS: Stage I NSCLC was diagnosed in 54 of 2203 persons screened (2.5%), on the basis of biopsy in 37 and on imaging findings in 17 patients in whom a tissue diagnosis could not be obtained. Treatment was by lobectomy in 18, sublobar resection in 14, and stereotactic body radiation therapy (SBRT) in 22. Patients treated with SBRT had lower forced expiratory volume in 1 second ( CONCLUSIONS: Many patients with screen-detected stage I lung cancer are medically unfit for lobectomy, and a variety of treatments are being used. Assessment of treatment-based outcomes will be critical for ensuring an optimal balance of the risks and benefits of CT screening in a medically diverse population

    An ASV for coastal underwater archaeology: The Pladypos survey of Caesarea Maritima, Israel

    No full text
    Coastal underwater archaeological sites are by nature dynamic, and often subject to disturbance from the action of waves, currents, sediment, and human activity. The need to document such sites comprehensively, accurately, and quickly has been the driving force behind technological advances in pre-disturbance site mapping since the 1960s. Certain challenges remain constant: the need for technology to be affordable and robust, with efficient post-processing as well as data acquisition times. Non-engineers must be able to interpret the results and publish them according to archaeological conventions. Large ancient shallow water port sites, submerged settlements, and landscape surveys present additional difficulties because of the volume of data generated. In this paper we present initial results of the first season of an expedition to map the submerged Herodian structures at Caesarea Maritima, Israel, using a robotic vehicle, the Autonomous Surface Vehicle (ASV) Pladypos, which was developed to address these challenges. This vehicle carries high-resolution imaging and remote-sensing tools to produce photomosaics and microbathymetry maps of the seafloor, as well as performing precise georeferencing. The Pladypos acquired a vast amount of georeferenced bathymetric and photographic data over several days in May 2014 and the results were later integrated into a GIS
    corecore