304 research outputs found
Unravelling quantum carpets: a travelling wave approach
Quantum carpets are generic spacetime patterns formed in the probability
distributions P(x,t) of one-dimensional quantum particles, first discovered in
1995. For the case of an infinite square well potential, these patterns are
shown to have a detailed quantitative explanation in terms of a travelling-wave
decomposition of P(x,t). Each wave directly yields the time-averaged structure
of P(x,t) along the (quantised)spacetime direction in which the wave
propagates. The decomposition leads to new predictions of locations, widths
depths and shapes of carpet structures, and results are also applicable to
light diffracted by a periodic grating and to the quantum rotator. A simple
connection between the waves and the Wigner function of the initial state of
the particle is demonstrated, and some results for more general potentials are
given.Comment: Latex, 26 pages + 6 figures, submitted to J. Phys. A (connections
with prior literature clarified
Self-interference of a single Bose-Einstein condensate due to boundary effects
A simple model wavefunction, consisting of a linear combination of two
free-particle Gaussians, describes many of the observed features seen in the
interactions of two isolated Bose-Einstein condensates as they expand, overlap,
and interfere. We show that a simple extension of this idea can be used to
predict the qualitative time-development of a single expanding BEC condensate
produced near an infinite wall boundary, giving similar interference phenomena.
We also briefly discuss other possible time-dependent behaviors of single BEC
condensates in restricted geometries,such as wave packet revivals.Comment: 8 pages, no figures, to appear in Physica Script
Optimum spectral window for imaging of art with optical coherence tomography
Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general
Meadow orchards as a good practice example for improving biodiversity in intensive apple orchards
Changes in agricultural land use and management are largely responsible for the current global biodiversity crisis. Addressing this crisis necessitates a change in management practices that are considered to limit biodiversity. Comparing intensive land-use forms with their extensive and traditional counterparts can help define good practice example for integrated conservation. We compare remnants of traditional meadow orchards with intensively managed apple orchards in a mountain region by investigating the multi-taxonomic diversity of seven groups (including vascular plants, wild bees, diurnal butterflies, orthopterans, spiders, birds, and bats) and macro-invertebrates inhabiting four habitat strata (soil, ground-dwelling, herb, and tree layer). Each group and stratum was sampled with a target sampling method. We found a consistent trend of higher abundance, diversity, and presence of threatened species in meadow orchards compared to apple orchards. Specifically, wild bees, butterflies, orthopterans, and birds showed significantly lower diversity in apple orchards across different diversity indices. Furthermore, multi-taxonomic indices of all taxa and most habitat strata followed the same trend, supporting the conclusion that these findings are applicable to the entire orchard ecosystem. We conclude that traditional agroforestry systems, such as meadow orchards, could represent a well-suited good-practice example for integrated biodiversity conservation in the agricultural landscape. Finally, we emphasize the importance of maintaining traditional management practices through effective conservation measures such as subsidies as part of agri-environmental scheme
Comparison of age-specific cataract prevalence in two population-based surveys 6 years apart
BACKGROUND: In this study, we aimed to compare age-specific cortical, nuclear and posterior subcapsular (PSC) cataract prevalence in two surveys 6 years apart. METHODS: The Blue Mountains Eye Study examined 3654 participants (82.4% of those eligible) in cross-section I (1992–4) and 3509 participants (75.1% of survivors and 85.2% of newly eligible) in cross-section II (1997–2000, 66.5% overlap with cross-section I). Cataract was assessed from lens photographs following the Wisconsin Cataract Grading System. Cortical cataract was defined if cortical opacity comprised ≥ 5% of lens area. Nuclear cataract was defined if nuclear opacity ≥ Wisconsin standard 4. PSC was defined if any present. Any cataract was defined to include persons who had previous cataract surgery. Weighted kappa for inter-grader reliability was 0.82, 0.55 and 0.82 for cortical, nuclear and PSC cataract, respectively. We assessed age-specific prevalence using an interval of 5 years, so that participants within each age group were independent between the two surveys. RESULTS: Age and gender distributions were similar between the two populations. The age-specific prevalence of cortical (23.8% in 1(st), 23.7% in 2(nd)) and PSC cataract (6.3%, 6.0%) was similar. The prevalence of nuclear cataract increased slightly from 18.7% to 23.9%. After age standardization, the similar prevalence of cortical (23.8%, 23.5%) and PSC cataract (6.3%, 5.9%), and the increased prevalence of nuclear cataract (18.7%, 24.2%) remained. CONCLUSION: In two surveys of two population-based samples with similar age and gender distributions, we found a relatively stable cortical and PSC cataract prevalence over a 6-year period. The increased prevalence of nuclear cataract deserves further study
Analytic results for Gaussian wave packets in four model systems: II. Autocorrelation functions
The autocorrelation function, A(t), measures the overlap (in Hilbert space)
of a time-dependent quantum mechanical wave function, psi(x,t), with its
initial value, psi(x,0). It finds extensive use in the theoretical analysis and
experimental measurement of such phenomena as quantum wave packet revivals. We
evaluate explicit expressions for the autocorrelation function for
time-dependent Gaussian solutions of the Schrodinger equation corresponding to
the cases of a free particle, a particle undergoing uniform acceleration, a
particle in a harmonic oscillator potential, and a system corresponding to an
unstable equilibrium (the so-called `inverted' oscillator.) We emphasize the
importance of momentum-space methods where such calculations are often more
straightforwardly realized, as well as stressing their role in providing
complementary information to results obtained using position-space
wavefunctions.Comment: 18 pages, RevTeX, to appear in Found. Phys. Lett, Vol. 17, Dec. 200
Chaotic eigenfunctions in momentum space
We study eigenstates of chaotic billiards in the momentum representation and
propose the radially integrated momentum distribution as useful measure to
detect localization effects. For the momentum distribution, the radially
integrated momentum distribution, and the angular integrated momentum
distribution explicit formulae in terms of the normal derivative along the
billiard boundary are derived. We present a detailed numerical study for the
stadium and the cardioid billiard, which shows in several cases that the
radially integrated momentum distribution is a good indicator of localized
eigenstates, such as scars, or bouncing ball modes. We also find examples,
where the localization is more strongly pronounced in position space than in
momentum space, which we discuss in detail. Finally applications and
generalizations are discussed.Comment: 30 pages. The figures are included in low resolution only. For a
version with figures in high resolution see
http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp99-2.htm
Amblyopia and quality of life: a systematic review
Background/Aims
Amblyopia is a common condition which can affect up to 5% of the general population. The health-related quality of life (HRQoL) implications of amblyopia and/or its treatment have been explored in the literature.
Methods
A systematic literature search was undertaken (16th-30th January 2007) to identify the HRQoL implications of amblyopia and/or its treatment.
Results
A total of 25 papers were included in the literature review. The HRQoL implications of amblyopia related specifically to amblyopia treatment, rather than the condition itself. These included the impact upon family life; social interactions; difficulties undertaking daily activities; and feelings and behaviour. The identified studies adopted a number of methodologies. The study populations included; children with the condition; parents of children with amblyopia; and adults who had undertaken amblyopia treatment as a child. Some studies developed their own measures of HRQoL, and others determined HRQoL through proxy measures.
Conclusions
The reported findings of the HRQoL implications are of importance when considering the management of cases of amblyopia. Further research is required to assess the immediate and long-term effects of amblyopia and/or its treatment upon HRQoL using a more standardised approach
On the rate of quantum ergodicity in Euclidean billiards
For a large class of quantized ergodic flows the quantum ergodicity theorem
due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost
all eigenfunctions become equidistributed in the semiclassical limit. In this
work we first give a short introduction to the formulation of the quantum
ergodicity theorem for general observables in terms of pseudodifferential
operators and show that it is equivalent to the semiclassical eigenfunction
hypothesis for the Wigner function in the case of ergodic systems. Of great
importance is the rate by which the quantum mechanical expectation values of an
observable tend to their mean value. This is studied numerically for three
Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000
eigenfunctions. We find that in configuration space the rate of quantum
ergodicity is strongly influenced by localized eigenfunctions like bouncing
ball modes or scarred eigenfunctions. We give a detailed discussion and
explanation of these effects using a simple but powerful model. For the rate of
quantum ergodicity in momentum space we observe a slower decay. We also study
the suitably normalized fluctuations of the expectation values around their
mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A
version with all figures can be obtained from
http://www.physik.uni-ulm.de/theo/qc/ (File:
http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any
problems contact Arnd B\"acker (e-mail: [email protected]) or Roman
Schubert (e-mail: [email protected]
- …