42 research outputs found

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Post-doctoral research fellowship as a health policy and systems research capacity development intervention: a case of the CHESAI initiative

    Get PDF
    BACKGROUND: Building capacity in health policy and systems research (HPSR), especially in low- and middle-income countries, remains a challenge. Various approaches have been suggested and implemented by scholars and institutions using various forms of capacity building to address challenges regarding HPSR development. The Collaboration for Health Systems Analysis and Innovation (CHESAI) – a collaborative effort between the Universities of Cape Town and the Western Cape Schools of Public Health – has employed a non-research based post-doctoral research fellowship (PDRF) as a way of building African capacity in the field of HPSR by recruiting four post-docs. In this paper, we (the four post-docs) explore whether a PDRF is a useful approach for capacity building for the field of HPSR using our CHESAI PDRF experiences. METHODS: We used personal reflections of our written narratives providing detailed information regarding our engagement with CHESAI. The narratives were based on a question guide around our experiences through various activities and their impacts on our professional development. The data analysis process was highly iterative in nature, involving repeated meetings among the four post-docs to reflect, discuss and create themes that evolved from the discussions. RESULTS: The CHESAI PDRF provided multiple spaces for our engagement and capacity development in the field of HPSR. These spaces provided us with a wide range of learning experiences, including teaching and research, policy networking, skills for academic writing, engaging practitioners, co-production and community dialogue. Our reflections suggest that institutions providing PDRF such as this are valuable if they provide environments endowed with adequate resources, good leadership and spaces for innovation. Further, the PDRFs need to be grounded in a community of HPSR practice, and provide opportunities for the post-docs to gain an in-depth understanding of the broader theoretical and methodological underpinnings of the field. CONCLUSION: The study concludes that PDRF is a useful approach to capacity building in HPSR, but it needs be embedded in a community of practice for fellows to benefit. More academic institutions in Africa need to adopt innovative and flexible support for emerging leaders, researchers and practitioners to strengthen our health systemsIS

    Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints

    Full text link

    Competitive abilities of invasive <i>Lagarosiphon major</i> and native <i>Ceratophyllum demersum</i> in monocultures and mixed cultures in relation to experimental sediment dredging

    No full text
    Competitive abilities of Lagarosiphon major (Ridley) Moss (invasive in Belgium) and native Ceratophyllum demersum L. were assessed experimentally in relation to sediment dredging. We mimicked these conditions by taking undisturbed sediment ('before dredging' treatment) and by using restored sediment where the uppermost nutrient rich top layer was removed ('after dredging' treatment). Both the species were allowed to grow for seven weeks in monocultures and mixed cultures at different planting densities. Overall, invasive L. major performed better than native C. demersum independent of the characteristics of the growth environment. L. major achieved a higher relative growth rate (RGR) in both treatments based on total length (0.17-0.21 week-1) and weight (0.10-0.19 week-1) compared to C. demersum (length: 0.04-0.07 week-1; weight: 0.03-0.17 week-1). The better performance of L. major was due to a high plasticity under stressful conditions of low free CO2 and high pH. Intraspecific competition and niche partitioning were observed between the two species indicating that species coexistence is favoured instead of competitive exclusion. L. major performed better in the 'after dredging' treatment. Consequently, we deduce that sediment dredging will not lead to a decline of the invasive L. major

    Competition between <i>Lemna minuta</i> and <i>Lemna minor</i> at different nutrient concentrations

    No full text
    We investigated the differential responses of invasive alien Lemna minuta and native Lemna minor to nutrient loading as well as the mechanism of competition between the species. The role of nutrients, species identity, species influence in determining the outcome of competition between the species was estimated using the Relative Growth Rate Difference (RGRD) model. The two species differed in their response to nutrient loading. The native L. minor responded indifferently to nutrient loading. The species Relative Growth Rate (RGR) was 0.10 d-1, 0.11 d-1 and 0.09 d-1 in high, medium and low nutrients, respectively. On the other hand, the invasive L. minuta responded opportunistically to high nutrient availability and had an RGR of 0.13 d-1, 0.10 d-1 and 0.08 d-1 in high, medium and low nutrients, respectively. As a result, the invasive species was dominant in high nutrient availability but lost to the native species at low nutrient availability. The invader formed approximately 60% and less than 50% of the stand final total dry biomass in high and low nutrient availability, respectively. Species RGR were reduced by both intra- and interspecific competition but intraspecific effects were stronger than interspecific effects. On the overall, the species significantly differed in their constant RGR. These differences in RGR between the species (species identity) and the differential response to nutrient loading were the main determinant of change in final biomass composition of these species in mixture. Species influence (competition) only had a small influence on the outcome of competition between the species. The observed species response to nutrient loading could be targeted in management of the invasive species. Lowering nutrients can be proposed to reduce the impact of the invasive L. minuta

    Pistia stratiotes L.

    No full text
    One of the EPPO (European and Mediterranean Plant Protection Organization) data sheets on pests recommended for regulation, being an output from an expert working group that risk analysed P. stratiotes for the EPPO region in October 2016

    Alternanthera philoxeroides (Mart.) Griseb.

    No full text
    One of the EPPO (European and Mediterranean Plant Protection Organization) data sheets on pests recommended for regulation, being an output from the expert working group that risk assessed A. philoxeroides in April 2015
    corecore