8,258 research outputs found

    Film Review of “Robot & Frank”

    Get PDF

    Film Review of The Farewell

    Get PDF

    Where Everybody Knows Your Name

    Get PDF

    Does oxidative stress shorten telomeres in vivo? A review

    Get PDF
    The length of telomeres, the protective caps of chromosomes, is increasingly used as a biomarker of individual health state because it has been shown to predict chances of survival in a range of endothermic species including humans. Oxidative stress is presumed to be a major cause of telomere shortening, but most evidence to date comes from in vitro cultured cells. The importance of oxidative stress as a determinant of telomere shortening in vivo remains less clear and has recently been questioned. We, therefore, reviewed correlative and experimental studies investigating the links between oxidative stress and telomere shortening in vivo. While correlative studies provide equivocal support for a connection between oxidative stress and telomere attrition (10 of 18 studies), most experimental studies published so far (seven of eight studies) partially or fully support this hypothesis. Yet, this link seems to be tissue-dependent in some cases, or restricted to particular categories of individual (e.g. sex-dependent) in other cases. More experimental studies, especially those decreasing antioxidant protection or increasing pro-oxidant generation, are required to further our understanding of the importance of oxidative stress in determining telomere length in vivo. Studies comparing growing versus adult individuals, or proliferative versus non-proliferative tissues would provide particularly important insights

    Curie temperatures of the concentrated and diluted Kondo-lattice model as a possible candidate to describe magnetic semiconductors and metals

    Full text link
    We present a theory to model carrier mediated ferromagnetism in concentrated or diluted local moment systems. The electronic subsystem of the Kondo lattice model is described by a combined equation of motion / coherent potential approximation method. Doing this we can calculate the free energy of the system and its minimum according to the magnetization of the local moments. Thus also the Curie temperature can be determined and its dependence on important model parameters. We get qualitative agreement with the Curie temperatures' experimental values of Ga1x_{1-x}Mnx_xAs for a proper hole density.Comment: 11 pages, 10 figures, refereed version of Physica Status Solidi b (http://dx.doi.org/10.1002/pssb.201147059

    Rashba induced chirality switching of domain walls and suppression of the Walker breakdown

    Full text link
    In conventional domain wall systems the aim of a high domain wall velocity may be hindered by the occurrence of a Walker breakdown at comparably low current density. We show how a Rashba interaction can stabilize the domain wall dynamics and thereby shift the Walker breakdown to higher current densities. The Rashba interaction creates a field like spin torque, which breaks the symmetry of the system and modifies the internal structure of the domain wall. Besides a shift of the Walker breakdown it can additionally induce a chirality switch of the domain wall at sufficient Rashba fields. The preferred chirality may then be chosen by the direction of the current flow. Both, the suppression of the Walker breakdown and the chirality switching, affect the domain wall velocity. This is even more pronounced for short current pulses, where an additional domain wall movement after the pulse in either positive or negative direction can determine the final position of the domain wall.Comment: 10 pages, 9 figure

    The Intern: A Film Review

    Get PDF
    corecore