33 research outputs found

    Discrete partitioning of HIV-1 Env forms revealed by viral capture

    Get PDF
    BACKGROUND: The structure of HIV-1 envelope glycoprotein (Env) is flexible and heterogeneous on whole virions. Although functional Env complexes are thought to require trimerization of cleaved gp41/gp120 heterodimers, variable processing can result in the potential incorporation of non-functional uncleaved proteins (gp160), non-trimeric arrangements of gp41/gp120 heterodimers, and gp120 depleted gp41 stumps. The potential distribution of functional and non-functional Env forms across replication-competent viral populations may have important implications for neutralizing and non-neutralizing antibody functions. This study applied an immuno-bead viral capture assay (VCA) to interrogate the potential distribution (heterologous vs homologous) of functional and non-functional forms of virion associated Env. RESULTS: The VCA revealed a significant association between depletion of infectious virions and virion Env incorporation, but not between infectivity and p24-gag. Three distinct subpopulations of virions were identified within pools of genetically homogenous viral particles. Critically, a significant subpopulation of infectious virions were exclusively captured by neutralizing antibodies (nAbs) indicative of a homologous distribution of functional trimeric Env forms. A second infectious subpopulation bound both neutralizing and non-neutralizing antibodies (nnAbs) representative of a heterologous distribution of Env forms, while a third non-infectious subpopulation was predominantly bound by nnAbs recognizing gp41 stumps. CONCLUSIONS: The observation that a distinct and significant subpopulation of infectious virions is exclusively captured by neutralizing antibodies has important implications for understanding antibody binding and neutralization, as well as other antibody effector functions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-015-0207-z) contains supplementary material, which is available to authorized users

    The HIV-1 transmission bottleneck

    Full text link

    The HIV-1 transmission bottleneck

    Get PDF
    It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient

    Aggregate complexes of HIV-1 induced by multimeric antibodies.

    Get PDF
    BACKGROUND: Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. RESULTS: The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. CONCLUSIONS: These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-014-0078-8) contains supplementary material, which is available to authorized users
    corecore