1 research outputs found

    High Metallicity Mg II Absorbers in the z < 1 Lyman alpha Forest of PKS 0454+039: Giant LSB Galaxies?

    Full text link
    We report the discovery of two iron-group enhanced high-metallicity Mg II absorbers in a search through 28 Lyman Alpha forest clouds along the PKS 0454+039 sight line. Based upon our survey and the measured redshift number densities of W_r(MgII) <= 0.3 A absorbers and Lyman Alpha absorbers at z ~ 1, we suggest that roughly 5% of Lyman Alpha absorbers at z < 1 will exhibit "weak" Mg II absorption to a 5-sigma W_r(2796) detection limit of 0.02 A. The two discovered absorbers, at redshifts z = 0.6248 and z = 0.9315, have W_r(Lya) = 0.33 and 0.15 A, respectively. Based upon photoionization modeling, the H I column densities are inferred to be in the range 15.8 <= log N(HI) <= 16.8 cm^-2. For the z = 0.6428 absorber, if the abundance pattern is solar, then the cloud has [Fe/H] > -1; if its gas-phase abundance follows that of depleted clouds in our Galaxy, then [Fe/H] > 0 is inferred. For the z = 0.9315 absorber, the metallicity is [Fe/H] > 0, whether the abundance pattern is solar or suffers depletion. Imaging and spectroscopic studies of the PKS 0454+039 field reveal no candidate luminous objects at these redshifts. We discuss the possibility that these Mg II absorbers may arise in the class of "giant" low surface brightness galaxies, which have [Fe/H] >= -1, and even [Fe/H] >= 0, in their extended disks. We tentatively suggest that a substantial fraction of these "weak" Mg II absorbers may select low surface brightness galaxies out to z ~ 1.Comment: Accepted The Astrophysical Journal; 25 pages; 6 encapsulated figure
    corecore