346 research outputs found

    The chondro-osseous continuum: is it possible to unlock the potential assigned within?

    Get PDF
    Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis

    MMP13

    Full text link

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Exposure to excess Phenobarbital negatively influences the osteogenesis of chick embryos

    Get PDF
    Phenobarbital is an antiepileptic drug that is widely used to treat epilepsy in a clinical setting. However, a long term of phenobarbital administration in pregnant women may produce side effects on embryonic skeletogenesis. In this study, we aim to investigate the mechanism by which phenobarbital treatment induces developmental defects in long bones. We first determined that phenobarbital treatment decreased chondrogenesis and inhibited the proliferation of chondrocytes in chick embryos. Phenobarbital treatment also suppressed mineralization in both in vivo and in vitro long bone models. Next, we established that phenobarbital treatment delayed blood vessel invasion in a cartilage template, and this finding was supported by the down-regulation of vascular endothelial growth factor in the hypertrophic zone following phenobarbital treatment. Phenobarbital treatment inhibited tube formation and the migration of human umbilical vein endothelial cells. In addition, it impaired angiogenesis in chick yolk sac membrane model and chorioallantoic membrane model. In summary, phenobarbital exposure led to shortened lengths of long bones during embryogenesis, which might result from inhibiting mesenchyme differentiation, chondrocyte proliferation, and delaying mineralization by impairing vascular invasion

    Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanical strain plays a significant role in the regulation of bone matrix turnover, which is mediated in part by matrix metalloproteinase (MMP)-13 and tissue inhibitors of matrix metalloproteinase (TIMP)-1. However, little is known about the correlation between mechanical strain and osteoblastic cell activities, including extracellular matrix (ECM) metabolism. Herein, we determined the effect of different magnitudes of cyclic tensile strain (0%, 6%, 12%, and 18%) on MMP-13 and TIMP-1 mRNA and protein expression in MC3T3-E1 osteoblasts. Furthermore, we employed specific inhibitors to examine the role of distinct signal transduction pathways known to mediate cellular responses to mechanical strain.</p> <p>Results</p> <p>We identified a magnitude-dependent increase in MMP-13 and TIMP-1 mRNA and protein levels in response to mechanical strains corresponding to 6%, 12%, and 18% elongation. The strain-induced increases in MMP-13 and TIMP-1 mRNA expression were inhibited by PD098059 and cycloheximide, respectively.</p> <p>Conclusions</p> <p>Our results suggest a mechanism for the regulation of bone matrix metabolism mediated by the differential expression of MMP-13 and TIMP-1 in response to increasing magnitudes of mechanical strain.</p

    A novel deletion mutation of the EXT2 gene in a large Chinese pedigree with hereditary multiple exostosis

    Get PDF
    Hereditary multiple exostoses (EXT) is an autosomal dominant disease characterized by the formation of cartilage-capped prominences (exostoses) that develop from the juxta-epiphyseal regions of the long bones. 3 genes are known to be involved in the formation of exostoses. Among them, EXT1 and EXT2, which encode enzymes that catalyse the biosynthesis of heparan sulfate, an important component of the extracellular matrix, are responsible for over 70% of the EXT cases. A large Chinese family with hereditary multiple exostoses has been analysed and the disease-causing mutation has been found. Blood samples were obtained from 69 family members, including 23 affected individuals. The EXT phenotype was shown to be linked to the EXT2 gene by using 2-point linkage analysis. After polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis and DNA sequencing, a previously unreported deletion of a G in exon 3 of EXT2 gene was observed. This deletion co-segregated with the disease phenotype, suggesting that it is the disease-causing mutation in this family. Furthermore, in at least 4 members chondrosarcoma occurred after either an operation or injury of the exostosis and 3 of them died of the malignance in the family. Whether the operation or injury was responsible for the malignant transformation still needs further study. © 2001 Cancer Research Campaign http://www.bjcancer.co

    MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1

    Get PDF
    Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the steady state. Present study has revealed that human chondrocytes isolated from healthy adults constitutively express and secrete MMP-13, but that it is rapidly endocytosed and degraded by chondrocytes. Both pro- and activated MMP-13 bind to clusters II and III of low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). Domain deletion studies indicated that the hemopexin domain is responsible for this interaction. Binding competition between MMP-13 and ADAMTS-4, -5 or TIMP-3, which also bind to cluster II, further shown that the MMP-13 binding site within cluster II is different from those of ADAMTS-4, -5 or TIMP-3. MMP-13 is therefore co-endocytosed with ADAMTS-5 and TIMP-3 by human chondrocytes. These findings indicate that MMP-13 may play a role on physiological turnover of cartilage extracellular matrix and that LRP1 is a key modulator of extracellular levels of MMP-13 and its internalization is independent of the levels of ADAMTS-4, -5 and TIMP-3

    The BACH1 inhibitor ASP8731 inhibits inflammation and vaso-occlusion and induces fetal hemoglobin in sickle cell disease

    Get PDF
    In sickle cell disease (SCD), heme released during intravascular hemolysis promotes oxidative stress, inflammation, and vaso-occlusion. Conversely, free heme can also activate expression of antioxidant and globin genes. Heme binds to the transcription factor BACH1, which represses NRF2-mediated gene transcription. ASP8731, is a selective small molecule inhibitor of BACH1. We investigated the ability of ASP8731 to modulate pathways involved in SCD pathophysiology. In HepG2 liver cells, ASP8731 increased HMOX1 and FTH1 mRNA. In pulmonary endothelial cells, ASP8731 decreased VCAM1 mRNA in response to TNF-α and blocked a decrease in glutathione in response to hemin. Townes-SS mice were gavaged once per day for 4 weeks with ASP8731, hydroxyurea (HU) or vehicle. Both ASP8731 and HU inhibited heme-mediated microvascular stasis and in combination, ASP8731 significantly reduced microvascular stasis compared to HU alone. In Townes-SS mice, ASP8731 and HU markedly increased heme oxygenase-1 and decreased hepatic ICAM-1, NF-kB phospho-p65 protein expression in the liver, and white blood cell counts. In addition, ASP8731 increased gamma-globin expression and HbF+ cells (F-cells) as compared to vehicle-treated mice. In human erythroid differentiated CD34+ cells, ASP8731 increased HGB mRNA and increased the percentage of F-cells 2-fold in manner similar to HU. ASP8731 and HU when given together induced more HbF+ cells compared to either drug alone. In CD34+ cells from one donor that was non-responsive to HU, ASP8731 induced HbF+ cells ~2-fold. ASP8731 and HU also increased HBG and HBA, but not HBB mRNA in erythroid differentiated CD34+ cells derived from SCD patients. These data indicate that BACH1 may offer a new therapeutic target to treat SCD
    corecore