276 research outputs found
T-junction ion trap array for two-dimensional ion shuttling, storage and manipulation
We demonstrate a two-dimensional 11-zone ion trap array, where individual
laser-cooled atomic ions are stored, separated, shuttled, and swapped. The trap
geometry consists of two linear rf ion trap sections that are joined at a 90
degree angle to form a T-shaped structure. We shuttle a single ion around the
corners of the T-junction and swap the positions of two crystallized ions using
voltage sequences designed to accommodate the nontrivial electrical potential
near the junction. Full two-dimensional control of multiple ions demonstrated
in this system may be crucial for the realization of scalable ion trap quantum
computation and the implementation of quantum networks.Comment: 3 pages, 5 figure
Metabolomic biomarkers predictive of early structural lung disease in cystic fibrosis
Neutrophilic airway inflammation plays a role in early structural lung disease in cystic fibrosis (CF), but the mechanisms underlying this pathway are incompletely understood
Laser ablation loading of a surface-electrode ion trap
We demonstrate loading by laser ablation of Sr ions into a
mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed,
frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5
ns. An additional laser is not required to photoionize the ablated material.
The efficiency and lifetime of several candidate materials for the laser
ablation target are characterized by measuring the trapped ion fluorescence
signal for a number of consecutive loads. Additionally, laser ablation is used
to load traps with a trap depth (40 meV) below where electron impact ionization
loading is typically successful ( 500 meV).Comment: 4 pages, 4 figure
All-optical ion generation for ion trap loading
We have investigated the all-optical generation of ions by photo-ionisation
of atoms generated by pulsed laser ablation. A direct comparison between a
resistively heated oven source and pulsed laser ablation is reported. Pulsed
laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium
flux, corresponding to atomic beams produced with oven temperatures greater
than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to
produce a thermal load more than one order of magnitude smaller than the oven
source. The atomic beam distributions obey Maxwell-Boltzmann statistics with
most probable speeds corresponding to temperatures greater than 2200 K. Below a
threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is
composed exclusively of ground state atoms. For higher fluences ions and
excited atoms are generated.Comment: 7 pages, 9 figure
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
Recent advances in quantum information processing with trapped ions have
demonstrated the need for new ion trap architectures capable of holding and
manipulating chains of many (>10) ions. Here we present the design and detailed
characterization of a new linear trap, microfabricated with scalable
complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited
to this challenge. Forty-four individually controlled DC electrodes provide the
many degrees of freedom required to construct anharmonic potential wells,
shuttle ions, merge and split ion chains, precisely tune secular mode
frequencies, and adjust the orientation of trap axes. Microfabricated
capacitors on DC electrodes suppress radio-frequency pickup and excess
micromotion, while a top-level ground layer simplifies modeling of electric
fields and protects trap structures underneath. A localized aperture in the
substrate provides access to the trapping region from an oven below, permitting
deterministic loading of particular isotopic/elemental sequences via
species-selective photoionization. The shapes of the aperture and
radio-frequency electrodes are optimized to minimize perturbation of the
trapping pseudopotential. Laboratory experiments verify simulated potentials
and characterize trapping lifetimes, stray electric fields, and ion heating
rates, while measurement and cancellation of spatially-varying stray electric
fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
Efficient Photoionization-Loading of Trapped Cadmium Ions with Ultrafast Pulses
Atomic cadmium ions are loaded into radiofrequency ion traps by
photoionization of atoms in a cadmium vapor with ultrafast laser pulses. The
photoionization is driven through an intermediate atomic resonance with a
frequency-quadrupled mode-locked Ti:Sapphire laser that produces pulses of
either 100 fsec or 1 psec duration at a central wavelength of 229 nm. The large
bandwidth of the pulses photoionizes all velocity classes of the Cd vapor,
resulting in high loading efficiencies compared to previous ion trap loading
techniques. Measured loading rates are compared with a simple theoretical
model, and we conclude that this technique can potentially ionize every atom
traversing the laser beam within the trapping volume. This may allow the
operation of ion traps with lower levels of background pressures and less trap
electrode surface contamination. The technique and laser system reported here
should be applicable to loading most laser-cooled ion species.Comment: 11 pages, 12 figure
Quantum control of Sr in a miniature linear Paul trap
We report on the construction and characterization of an apparatus for
quantum information experiments using Sr ions. A miniature linear
radio-frequency (rf) Paul trap was designed and built. Trap frequencies above 1
MHz in all directions are obtained with 50 V on the trap end-caps and less than
1 W of rf power. We encode a quantum bit (qubit) in the two spin states of the
electronic ground-state of the ion. We constructed all the necessary
laser sources for laser cooling and full coherent manipulation of the ions'
external and internal states. Oscillating magnetic fields are used for coherent
spin rotations. High-fidelity readout as well as a coherence time of 2.5 ms are
demonstrated. Following resolved sideband cooling the average axial vibrational
quanta of a single trapped ion is and a heating rate of
ms is measured.Comment: 8 pages,9 figure
Manipulating ultracold atoms with a reconfigurable nanomagnetic system of domain walls
The divide between the realms of atomic-scale quantum particles and
lithographically-defined nanostructures is rapidly being bridged. Hybrid
quantum systems comprising ultracold gas-phase atoms and substrate-bound
devices already offer exciting prospects for quantum sensors, quantum
information and quantum control. Ideally, such devices should be scalable,
versatile and support quantum interactions with long coherence times.
Fulfilling these criteria is extremely challenging as it demands a stable and
tractable interface between two disparate regimes. Here we demonstrate an
architecture for atomic control based on domain walls (DWs) in planar magnetic
nanowires that provides a tunable atomic interaction, manifested experimentally
as the reflection of ultracold atoms from a nanowire array. We exploit the
magnetic reconfigurability of the nanowires to quickly and remotely tune the
interaction with high reliability. This proof-of-principle study shows the
practicability of more elaborate atom chips based on magnetic nanowires being
used to perform atom optics on the nanometre scale.Comment: 4 pages, 4 figure
Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates
Background: In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions.
Methods: Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification.
Results: Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I: E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant.
Conclusions: Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account
Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap
We characterise the performance of a surface-electrode ion "chip" trap
fabricated using established semiconductor integrated circuit and
micro-electro-mechanical-system (MEMS) microfabrication processes which are in
principle scalable to much larger ion trap arrays, as proposed for implementing
ion trap quantum information processing. We measure rf ion micromotion parallel
and perpendicular to the plane of the trap electrodes, and find that on-package
capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping
lifetime, charging effects due to laser light incident on the trap electrodes,
and the heating rate for a single trapped ion. The performance of this trap is
found to be comparable with others of the same size scale.Comment: 6 pages, 10 figure
- …