11 research outputs found

    Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies)

    No full text
    The neonatal abnormalities, treatments and outcomes in a group of 13 cloned transgenic calves and fetuses that progressed into the third trimester of pregnancy are described. From these 13 fetuses, 8 calves were born live, 4 stillborn fetuses were recovered from 3 cows that died 7 d to 2 mo before term, and 1 aborted fetus was recovered at 8 mo gestation. All fetuses and calves were derived from the same male fetal Holstein fibroblast cell line transfected with a beta-galactosidase marker gene. Six calves were delivered by Cesarian section and two by vaginal delivery between 278 and 288 d of gestation. Birth weights ranged from 44 to 58.6 kg. Five of the 8 live born calves were judged to be normal within 4 h of birth based on clinical signs and blood gas measurements. One of these 5 calves died at 6 wk of age from a suspected dilated cardiomyopathy. Three of the 8 calves were diagnosed with neonatal respiratory distress immediately following birth, one of which died (at 4 d of age) as a result of pulmonary surfactant deficiency coupled with pulmonary hypertension and elevated systemic venous pressures. Similar Endings of chronic pulmonary hypertension were also observed in 2 of 5 fetuses. Placental edema was present in both calves that later died and in the 2 fetuses with cardiopulmonary abnormalities. Hydrallantois occurred with or without placental edema in 6 cows, and only 1 calf from this group survived. The 6 cows without hydrallantois or placental edema produced 5 live calves and 1 aborted fetus. The cardiopulmonary abnormalities observed in the calves and fetuses occurred in utero in conjunction with placental abnormalities, and it is likely that the cloning technique and/or in vitro embryo culture conditions contributed to these abnormalities, although the mechanism remains to be determined. (C) 1999 by Elsevier Science Inc

    Calcium release at fertilization: Artificially mimicking the oocyte's response to sperm

    No full text
    The mechanism of sperm-induced calcium release has been the subject of many studies since the development in the late 1950s of in vitro culture systems that support mammalian fertilization. Despite efforts to elucidate the nature of the signal from the sperm that triggers both the early and late events of oocyte activation, the precise mechanism remains unresolved. Now, with the advent of somatic nuclear transfer technologies, the need to better understand this unique process has been recognised. Nuclear transfer embryos must be induced to commence development artificially because the activating signal from the sperm is absent. The primary activating stimulus is a large increase in the concentration of intracellular-free calcium and numerous physical and chemical treatments have been found to induce calcium changes that initiate the events of oocyte activation. Although live cloned offspring have been produced in a number of species, the overall efficiencies of the nuclear transfer procedures described thus far are unacceptably low and phenotypic anomalies are common. With the aim of improving these efficiencies, researchers are developing artificial activation treatments which induce oocyte responses that mimic those induced by fertilizing sperm. One strategy is to replicate the pattern of calcium change more closely. Another strategy is to couple an activating stimulus with treatments that inhibit maturation (or M-phase) promoting factor (MPF) activity, which regulates meiotic progression in oocytes. This paper reviews what is understood of calcium release at fertilization and describes the treatments that have been used to induce oocyte activation artificially in parthenogenetic and nuclear transfer studies. The relative effectiveness of the strategies employed to mimic the oocyte's response to sperm are discussed.Christopher G. Grupen, Mark B. Nottle and Hiroshi Nagashim
    corecore